Text Normalization(文本正则化)

Overview

Text Normalization(文本正则化)

任务描述:通过机器学习算法将英文文本的“手写”形式转换成“口语“形式,例如“6ft”转换成“six feet”等

实验结果

  1. XGBoost + bag-of-words: 0.99159
  2. XGBoost+Weights+rules:0.99002
  3. 进阶solve函数(使用6个output文件):0.98939
  4. 基本solve函数:0.98277
  5. RandomTree + Rules:0.95304
  6. XGboost:0.92605

参考github网址:

数据来源网址:

数据分析EDA网址(帮助快速理解数据特征):

提升点

1. 数据的不平衡性

对于平衡的数据,我们一般使用准确率作为一般的评估标准(accuracy),当类别不平衡时,准确率就具有迷惑性,而且意义不大。因此有以下几种主流评测标准

  • Receiver operating curve,计算ROC曲线面积(二分类,从PLAIN和非PLAIN)
  • Precision-recall curve,计算此曲线下的面积
  • Precision

- 简单通用的算法

阈值调整(threshold moving):将原本默认为0.5的阈值调整到 较少类别/(较少类别+较多类别)即可。使用现有的集成学习分类器,如随机森林或者xgboost,并调整分类阈值

- 对XGBoost模型数据的不平衡处理方法

通过正负样本的权重解决样本不均衡(一般分类中小样本量类别权重高,大样本类别权重低,再进行计算和建模

- 简单有效的方案

  1. 不对数据进行过采样和欠采样,但使用现有的集成学习模型,如随机森林,XGBoost(lGBM)
  2. 输出模型的预测概率,调整阈值得到最终结果
  3. 选择合适的评估标准,如precision,Recall
  4. 文本正则化中的任务是对测试集中的16个目标进行预测,训练集中的最大类别是PLAIN,为7353693,最小的类别为ADDRESS,为522。因此暂定PLAIN的权重为0.01,其余为1.(除去PLAIN,其余15个再做一次分类)

2. 超参数优化(时间复杂度,空间复杂度)

如何选择合适的超参数?不同模型会有不同的最优超参数组合,找到这组最优超参数大家是根据经验或者随机的方法,来尝试。但是其是有可能用数学或者机器学习的模型来解决模型本身超参数的选择问题

背景

  • 机器学习模型超参数调优一般被认为是一个黑盒优化问题,在调优过程中我们只能看到模型的输入与输出,不能获取模型训练过程中的梯度信息,也不能假设模型超参数和最终指标符合凸优化条件
  • 模型训练代价大,时间,金钱成本

自动调参方法

Grid search(网格搜索),Random search(随机搜索),Genetic algorithm(遗传算法),Paticle Swarm Optimization(粒子群优化),Bayesian Optimization(贝叶斯优化),TPE,SMAC等

  • Genetic algorithm和PSO是经典黑盒优化算法,归类为群体优化算法,不是特别适合模型超参数调优场景,因为其需要有足够多的初始样本点,并且优化效率不高**
  • Grid search很容易理解与实现,但是遍历所有的超参数组合来找到其中最优化的方案,对于连续值还需要等间距采样。实际上这30种组合不一定取得全局最优解,而且计算量很大很容易组合爆炸,并不是一种高效的参数调优方法。
  • Random search普遍被认为比Grid search效果好,虽然组合的超参数具有随机性,但是其出现效果可能特别差也可能特别好,在尝试次数和Grid search相同的情况下一般最值会更大,当然variance也更大但这不影响最终结果。

但是在计算机资源有限的情况下,Grid search与Random search不一定比建模工程师的经验要好

  • Bayesian Optimization
    适用场景:
    (1)需要优化的function计算起来非常费时费力,比如上面提到的神经网络的超参问题,每一次训练神经网络都是燃烧好多GPU的
    (2)你要优化的function没有导数信息

3. 可解释性工具(https://www.kaggle.com/learn/machine-learning-explainability)

Xgboost相对于线性模型在进行预测时往往有更好的精度,但是同时也失去了线性模型的可解释性。所以Xgboost通常被认为是黑箱模型。 经典方法是使用全局特征重要性评估

2017年,Lundberg和Lee的[论文]( [A Unified Approach to Interpreting Model Predictions.pdf](../文献阅读/A Unified Approach to Interpreting Model Predictions.pdf) )提出了SHAP值这一广泛适用的方法用来解释各种模型(分类以及回归),其中最大的受益者莫过于之前难以被理解的黑箱模型,如boosting和神经网络模型。

  1. 二分类,看下准确率,高的话
  2. 集成XGBoost,LGB,随机森林
  3. 可解释性,SHAP(SHAP值只能对特征进行分析)
  4. 去掉PLAIN看下效果,ROC

后续改进

  1. 将PLAIN的权值设置为0,训练结果:分数为0.98991 将PLAIN去除不进行预测,实验结果无法得到官方分数,并且实验是通过上下文单词(context)来作为单位进行训练,若去除PLAIN无法训练。因此只能通过将权值设置为0,查看各个种类的预测准确率是否高,但是可以查看对训练集的效果
Owner
Jason_Zhang
Jason_Zhang
Indonesia spellchecker with python

indonesia-spellchecker Ganti kata yang terdapat pada file teks.txt untuk diperiksa kebenaran kata. Run on local machine python3 main.py

Rahmat Agung Julians 1 Sep 14, 2022
Practical Machine Learning with Python

Master the essential skills needed to recognize and solve complex real-world problems with Machine Learning and Deep Learning by leveraging the highly popular Python Machine Learning Eco-system.

Dipanjan (DJ) Sarkar 2k Jan 08, 2023
An open collection of annotated voices in Japanese language

声庭 (Koniwa): オープンな日本語音声とアノテーションのコレクション Koniwa (声庭): An open collection of annotated voices in Japanese language 概要 Koniwa(声庭)は利用・修正・再配布が自由でオープンな音声とアノテ

Koniwa project 32 Dec 14, 2022
Prompt-learning is the latest paradigm to adapt pre-trained language models (PLMs) to downstream NLP tasks

Prompt-learning is the latest paradigm to adapt pre-trained language models (PLMs) to downstream NLP tasks, which modifies the input text with a textual template and directly uses PLMs to conduct pre

THUNLP 2.3k Jan 08, 2023
Findings of ACL 2021

Assessing Dialogue Systems with Distribution Distances [arXiv][code] We propose to measure the performance of a dialogue system by computing the distr

Yahui Liu 16 Feb 24, 2022
This repository contains (not all) code from my project on Named Entity Recognition in philosophical text

NERphilosophy 👋 Welcome to the github repository of my BsC thesis. This repository contains (not all) code from my project on Named Entity Recognitio

Ruben 1 Jan 27, 2022
Local cross-platform machine translation GUI, based on CTranslate2

DesktopTranslator Local cross-platform machine translation GUI, based on CTranslate2 Download Windows Installer You can either download a ready-made W

Yasmin Moslem 29 Jan 05, 2023
Proquabet - Convert your prose into proquints and then you essentially have Vogon poetry

Proquabet Turn your prose into a constant stream of encrypted and meaningless-so

Milo Fultz 2 Oct 10, 2022
An official implementation for "CLIP4Clip: An Empirical Study of CLIP for End to End Video Clip Retrieval"

The implementation of paper CLIP4Clip: An Empirical Study of CLIP for End to End Video Clip Retrieval. CLIP4Clip is a video-text retrieval model based

ArrowLuo 456 Jan 06, 2023
NLP made easy

GluonNLP: Your Choice of Deep Learning for NLP GluonNLP is a toolkit that helps you solve NLP problems. It provides easy-to-use tools that helps you l

Distributed (Deep) Machine Learning Community 2.5k Jan 04, 2023
A Paper List for Speech Translation

Keyword: Speech Translation, Spoken Language Processing, Natural Language Processing

138 Dec 24, 2022
Jupyter Notebook tutorials on solving real-world problems with Machine Learning & Deep Learning using PyTorch

Jupyter Notebook tutorials on solving real-world problems with Machine Learning & Deep Learning using PyTorch. Topics: Face detection with Detectron 2, Time Series anomaly detection with LSTM Autoenc

Venelin Valkov 1.8k Dec 31, 2022
Code for producing Japanese GPT-2 provided by rinna Co., Ltd.

japanese-gpt2 This repository provides the code for training Japanese GPT-2 models. This code has been used for producing japanese-gpt2-medium release

rinna Co.,Ltd. 491 Jan 07, 2023
A PyTorch implementation of the Transformer model in "Attention is All You Need".

Attention is all you need: A Pytorch Implementation This is a PyTorch implementation of the Transformer model in "Attention is All You Need" (Ashish V

Yu-Hsiang Huang 7.1k Jan 05, 2023
A sample project that exists for PyPUG's "Tutorial on Packaging and Distributing Projects"

A sample Python project A sample project that exists as an aid to the Python Packaging User Guide's Tutorial on Packaging and Distributing Projects. T

Python Packaging Authority 4.5k Dec 30, 2022
Constituency Tree Labeling Tool

Constituency Tree Labeling Tool The purpose of this package is to solve the constituency tree labeling problem. Look from the dataset labeled by NLTK,

张宇 6 Dec 20, 2022
Checking spelling of form elements

Checking spelling of form elements. You can check the source files of external workflows/reports and configuration files

СКБ Контур (команда 1с) 15 Sep 12, 2022
Levenshtein and Hamming distance computation

distance - Utilities for comparing sequences This package provides helpers for computing similarities between arbitrary sequences. Included metrics ar

112 Dec 22, 2022
Train 🤗-transformers model with Poutyne.

poutyne-transformers Train 🤗 -transformers models with Poutyne. Installation pip install poutyne-transformers Example import torch from transformers

Lennart Keller 2 Dec 18, 2022