PyGCL: Graph Contrastive Learning Library for PyTorch

Overview

PyGCL: Graph Contrastive Learning for PyTorch

PyGCL is an open-source library for graph contrastive learning (GCL), which features modularized GCL components from published papers, standardized evaluation, and experiment management.


Prerequisites

PyGCL needs the following packages to be installed beforehand:

  • Python 3.8+
  • PyTorch 1.7+
  • PyTorch-Geometric 1.7
  • DGL 0.5+
  • Scikit-learn 0.24+

Getting Started

Take a look at various examples located at the root directory. For example, try the following command to train a simple GCN for node classification on the WikiCS dataset using the local-local contrasting mode:

python train_node_l2l.py --dataset WikiCS --param_path params/GRACE/[email protected] --base_model GCNConv

For detailed parameter settings, please refer to [email protected]. These examples are mainly for reproducing experiments in our benchmarking study. You can find more details regarding general practices of graph contrastive learning in the paper.

Usage

Package Overview

Our PyGCL implements four main components of graph contrastive learning algorithms:

  • graph augmentation: transforms input graphs into congruent graph views.
  • contrasting modes: specifies positive and negative pairs.
  • contrastive objectives: computes the likelihood score for positive and negative pairs.
  • negative mining strategies: improves the negative sample set by considering the relative similarity (the hardness) of negative sample.

We also implement utilities for loading datasets, training models, and running experiments.

Building Your Own GCL Algorithms

Besides try the above examples for node and graph classification tasks, you can also build your own graph contrastive learning algorithms straightforwardly.

Graph Augmentation

In GCL.augmentors, PyGCL provides the Augmentor base class, which offers a universal interface for graph augmentation functions. Specifically, PyGCL implements the following augmentation functions:

Augmentation Class name
Edge Adding (EA) EdgeAdding
Edge Removing (ER) EdgeRemoving
Feature Masking (FM) FeatureMasking
Feature Dropout (FD) FeatureDropout
Personalized PageRank (PPR) PPRDiffusion
Markov Diffusion Kernel (MDK) MarkovDiffusion
Node Dropping (ND) NodeDropping
Subgraphs induced by Random Walks (RWS) RWSampling
Ego-net Sampling (ES) Identity

Call these augmentation functions by feeding with a graph of in a tuple form of node features, edge index, and edge features x, edge_index, edge_weightswill produce corresponding augmented graphs.

PyGCL also supports composing arbitrary number of augmentations together. To compose a list of augmentation instances augmentors, you only need to use the right shift operator >>:

aug = augmentors[0]
for a in augs[1:]:
    aug = aug >> a

You can also write your own augmentation functions by defining the augment function.

Contrasting Modes

PyGCL implements three contrasting modes: (a) local-local, (b) global-local, and (c) global-global modes. You can refer to the models folder for details. Note that the bootstrapping latent loss involves some special model design (asymmetric online/offline encoders and momentum weight updates) and thus we implement contrasting modes involving this contrastive objective in a separate BGRL model.

Contrastive Objectives

In GCL.losses, PyGCL implements the following contrastive objectives:

Contrastive objectives Class name
InfoNCE loss InfoNCELoss
Jensen-Shannon Divergence (JSD) loss JSDLoss
Triplet Margin (TM) loss TripletLoss
Bootstrapping Latent (BL) loss BootstrapLoss
Barlow Twins (BT) loss BTLoss
VICReg loss VICRegLoss

All these objectives are for contrasting positive and negative pairs at the same scale (i.e. local-local and global-global modes). For global-local modes, we offer G2L variants except for Barlow Twins and VICReg losses. Moreover, for InfoNCE, JSD, and Triplet losses, we further provide G2LEN variants, primarily for node-level tasks, which involve explicit construction of negative samples. You can find their examples in the root folder.

Negative Mining Strategies

In GCL.losses, PyGCL further implements four negative mining strategies that are build upon the InfoNCE contrastive objective:

Hard negative mining strategies Class name
Hard negative mixing HardMixingLoss
Conditional negative sampling RingLoss
Debiased contrastive objective InfoNCELoss(debiased_nt_xent_loss)
Hardness-biased negative sampling InfoNCELoss(hardness_nt_xent_loss)

Utilities

PyGCL provides various utilities for data loading, model training, and experiment execution.

In GCL.util you can use the following utilities:

  • split_dataset: splits the dataset into train/test/validation sets according to public or random splits. Currently, four split modes are supported: [rand, ogb, wikics, preload] .
  • seed_everything: manually sets the seed to numpy and PyTorch environments to ensure better reproducebility.
  • SimpleParam: provides a simple parameter configuration class to manage parameters from microsoft-nni, JSON, and YAML files.

We also implement two downstream classifiersLR_classification and SVM_classification in GCL.eval based on PyTorch and Scikit-learn respectively.

Moreover, based on PyTorch Geometric, we provide functions for loading common node and graph datasets. You can useload_node_dataset and load_graph_dataset in utils.py.

Owner
GCL: Graph Contrastive Learning Library for PyTorch
GCL: Graph Contrastive Learning Library for PyTorch
An optimizer that trains as fast as Adam and as good as SGD.

AdaBound An optimizer that trains as fast as Adam and as good as SGD, for developing state-of-the-art deep learning models on a wide variety of popula

LoLo 2.9k Dec 27, 2022
High-fidelity performance metrics for generative models in PyTorch

High-fidelity performance metrics for generative models in PyTorch

Vikram Voleti 5 Oct 24, 2021
Pytorch implementation of Distributed Proximal Policy Optimization

Pytorch-DPPO Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286 Using PPO with clip loss (from https

Alexis David Jacq 164 Jan 05, 2023
PyTorch to TensorFlow Lite converter

PyTorch to TensorFlow Lite converter

Omer Ferhat Sarioglu 140 Dec 13, 2022
Learning Sparse Neural Networks through L0 regularization

Example implementation of the L0 regularization method described at Learning Sparse Neural Networks through L0 regularization, Christos Louizos, Max W

AMLAB 202 Nov 10, 2022
higher is a pytorch library allowing users to obtain higher order gradients over losses spanning training loops rather than individual training steps.

higher is a library providing support for higher-order optimization, e.g. through unrolled first-order optimization loops, of "meta" aspects of these

Facebook Research 1.5k Jan 03, 2023
Code for paper "Energy-Constrained Compression for Deep Neural Networks via Weighted Sparse Projection and Layer Input Masking"

model_based_energy_constrained_compression Code for paper "Energy-Constrained Compression for Deep Neural Networks via Weighted Sparse Projection and

Haichuan Yang 16 Jun 15, 2022
3D-RETR: End-to-End Single and Multi-View3D Reconstruction with Transformers

3D-RETR: End-to-End Single and Multi-View 3D Reconstruction with Transformers (BMVC 2021) Zai Shi*, Zhao Meng*, Yiran Xing, Yunpu Ma, Roger Wattenhofe

Zai Shi 36 Dec 21, 2022
Unofficial PyTorch implementation of DeepMind's Perceiver IO with PyTorch Lightning scripts for distributed training

Unofficial PyTorch implementation of DeepMind's Perceiver IO with PyTorch Lightning scripts for distributed training

Martin Krasser 251 Dec 25, 2022
PyTorch extensions for fast R&D prototyping and Kaggle farming

Pytorch-toolbelt A pytorch-toolbelt is a Python library with a set of bells and whistles for PyTorch for fast R&D prototyping and Kaggle farming: What

Eugene Khvedchenya 1.3k Jan 05, 2023
PyNIF3D is an open-source PyTorch-based library for research on neural implicit functions (NIF)-based 3D geometry representation.

PyNIF3D is an open-source PyTorch-based library for research on neural implicit functions (NIF)-based 3D geometry representation. It aims to accelerate research by providing a modular design that all

Preferred Networks, Inc. 96 Nov 28, 2022
The goal of this library is to generate more helpful exception messages for numpy/pytorch matrix algebra expressions.

Tensor Sensor See article Clarifying exceptions and visualizing tensor operations in deep learning code. One of the biggest challenges when writing co

Terence Parr 704 Dec 14, 2022
Fast, general, and tested differentiable structured prediction in PyTorch

Torch-Struct: Structured Prediction Library A library of tested, GPU implementations of core structured prediction algorithms for deep learning applic

HNLP 1.1k Jan 07, 2023
Over9000 optimizer

Optimizers and tests Every result is avg of 20 runs. Dataset LR Schedule Imagenette size 128, 5 epoch Imagewoof size 128, 5 epoch Adam - baseline OneC

Mikhail Grankin 405 Nov 27, 2022
A tiny scalar-valued autograd engine and a neural net library on top of it with PyTorch-like API

micrograd A tiny Autograd engine (with a bite! :)). Implements backpropagation (reverse-mode autodiff) over a dynamically built DAG and a small neural

Andrej 3.5k Jan 08, 2023
High-level batteries-included neural network training library for Pytorch

Pywick High-Level Training framework for Pytorch Pywick is a high-level Pytorch training framework that aims to get you up and running quickly with st

382 Dec 06, 2022
Official implementations of EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis.

EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis This repo contains the official implementations of EigenDamage: Structured Prunin

Chaoqi Wang 107 Apr 20, 2022
Training PyTorch models with differential privacy

Opacus is a library that enables training PyTorch models with differential privacy. It supports training with minimal code changes required on the cli

1.3k Dec 29, 2022
A very simple and small path tracer written in pytorch meant to be run on the GPU

MentisOculi Pytorch Path Tracer A very simple and small path tracer written in pytorch meant to be run on the GPU Why use pytorch and not some other c

Matthew B. Mirman 222 Dec 01, 2022
Implements pytorch code for the Accelerated SGD algorithm.

AccSGD This is the code associated with Accelerated SGD algorithm used in the paper On the insufficiency of existing momentum schemes for Stochastic O

205 Jan 02, 2023