Visualizing weather changes across the world using third party APIs and Python.

Overview

WEATHER FORECASTING ACROSS THE WORLD

Overview

Python scripts were created to visualize the weather for over 500 cities across the world at varying distances from the equator. To understand weather patterns for forecasting, a series of scatter plots were created. The scatter plots depicted the relationship between Temperature versus Latitude, Humidity versus Latitude, Cloudiness versus Latitiude, and Wind Speed versus Latitude. One of the relationship is shown below:

image

Linear regressions for each relationship were created separating them in Northern and Southern Hemispheres.

image

More than 500 cities were randomly selected based on there latitude and longitude to perform a weather check on each of the cities usig a series of API calls to confirm the findings of the Python scripts. The analysis used external data for comparison using third party APIs. Data was parsed using an OpenWeatherMap and US Census API Keys to make GET requests for JSON formatted information. Requested JSON information was converted into a PYTHON dictionary for loading into a Pandas Dataframe. A Google Maps and Places API Key was used to obtain information about geographic areas. Special attention was taken to understand rate limits and the importance of creating "test cases" prior to running large scripts. A firm understanding of each API documenation was used in the analysis to run efficient Python scripts.

The table below shows 20 of the 550 cities randomly selected for a weather check:

image

These relationships were used to assist in the selection of ideal weather conditions for vacation planning.


VACATION PLANNING USING WEATHER FORECASTING

Juptyer-gmaps and Google Places API was used for planning future vacations across the globe. A heat map of the humidity for the 550 cities selected above was created. The Pandas DataFrame was narrowed down to include only data for ideal weather conditions of a maximum temperature lower than 80 degrees but higher than 70. Wind speed less than 10 mph with zero cloudiness. Any rows that didn't contain all three conditions were dropped for the DataFrame. Google Places API located hotel within 5000 meters of selected coordinates. This information was plotted on the humidity heatmap with a pin containing the hotel name, city, and country.

image


Contact:

Owner
G Johnson
A certified Data Analyst from Rice University Data Analytics and Visualization Program. Experienced project manager with training in Public Health and Geology
G Johnson
Altair extension for saving charts in a variety of formats.

Altair Saver This packge provides extensions to Altair for saving charts to a variety of output types. Supported output formats are: .json/.vl.json: V

Altair 85 Dec 09, 2022
Project coded in Python using Pandas to look at changes in chase% for batters facing a pitcher first time through the order vs. thrid time

Project coded in Python using Pandas to look at changes in chase% for batters facing a pitcher first time through the order vs. thrid time

Jason Kraynak 1 Jan 07, 2022
Simple function to plot multiple barplots in the same figure.

Simple function to plot multiple barplots in the same figure. Supports padding and custom color.

Matthias Jakobs 2 Feb 21, 2022
Python package to visualize and cluster partial dependence.

partial_dependence A python library for plotting partial dependence patterns of machine learning classifiers. The technique is a black box approach to

NYU Visualization Lab 25 Nov 14, 2022
Python package for hypergraph analysis and visualization.

The HyperNetX library provides classes and methods for the analysis and visualization of complex network data. HyperNetX uses data structures designed to represent set systems containing nested data

Pacific Northwest National Laboratory 304 Dec 27, 2022
Smarthome Dashboard with Grafana & InfluxDB

Smarthome Dashboard with Grafana & InfluxDB This is a complete overhaul of my Raspberry Dashboard done with Flask. I switched from sqlite to InfluxDB

6 Oct 20, 2022
Info for The Great DataTas plot-a-thon

The Great DataTas plot-a-thon Datatas is organising a Data Visualisation competition: The Great DataTas plot-a-thon We will be using Tidy Tuesday data

2 Nov 21, 2021
Here I plotted data for the average test scores across schools and class sizes across school districts.

HW_02 Here I plotted data for the average test scores across schools and class sizes across school districts. Average Test Score by Race This graph re

7 Oct 27, 2021
Eulera Dashboard is an easy and intuitive way to get a quick feel of what’s happening on the world’s market.

an easy and intuitive way to get a quick feel of what’s happening on the world’s market ! Eulera dashboard is a tool allows you to monitor historical

Salah Eddine LABIAD 4 Nov 25, 2022
Data science project for exploratory analysis on the kcse grades dataset (Kamilimu Data Science Track)

Kcse-Data-Analysis Data science project for exploratory analysis on the kcse grades dataset (Kamilimu Data Science Track) Findings The performance of

MUGO BRIAN 1 Feb 23, 2022
3D plotting and mesh analysis through a streamlined interface for the Visualization Toolkit (VTK)

PyVista Deployment Build Status Metrics Citation License Community 3D plotting and mesh analysis through a streamlined interface for the Visualization

PyVista 1.6k Jan 08, 2023
A D3.js plugin that produces flame graphs from hierarchical data.

d3-flame-graph A D3.js plugin that produces flame graphs from hierarchical data. If you don't know what flame graphs are, check Brendan Gregg's post.

Martin Spier 740 Dec 29, 2022
Certificate generating and sending system written in Python.

Certificate Generator & Sender How to use git clone https://github.com/saadhaxxan/Certificate-Generator-Sender.git cd Certificate-Generator-Sender Add

Saad Hassan 11 Dec 01, 2022
Piglet-shaders - PoC of custom shaders for Piglet

Piglet custom shader PoC This is a PoC for compiling Piglet fragment shaders usi

6 Mar 10, 2022
Apache Superset is a Data Visualization and Data Exploration Platform

Apache Superset is a Data Visualization and Data Exploration Platform

The Apache Software Foundation 49.9k Jan 02, 2023
A GUI for Pandas DataFrames

PandasGUI A GUI for analyzing Pandas DataFrames. Demo Installation Install latest release from PyPi: pip install pandasgui Install directly from Githu

Adam 2.8k Jan 03, 2023
Area-weighted venn-diagrams for Python/matplotlib

Venn diagram plotting routines for Python/Matplotlib Routines for plotting area-weighted two- and three-circle venn diagrams. Installation The simples

Konstantin Tretyakov 400 Dec 31, 2022
Interactive plotting for Pandas using Vega-Lite

pdvega: Vega-Lite plotting for Pandas Dataframes pdvega is a library that allows you to quickly create interactive Vega-Lite plots from Pandas datafra

Altair 342 Oct 26, 2022
An adaptable Snakemake workflow which uses GATKs best practice recommendations to perform germline mutation calling starting with BAM files

Germline Mutation Calling This Snakemake workflow follows the GATK best-practice recommandations to call small germline variants. The pipeline require

12 Dec 24, 2022