Logica is a logic programming language that compiles to StandardSQL and runs on Google BigQuery.

Overview

Logica: language of Big Data

Logica is an open source declarative logic programming language for data manipulation. Logica is a successor to Yedalog, a language created at Google earlier.

Why?

Logica is for engineers, data scientists and other specialists who want to use logic programming syntax when writing queries and pipelines to run on BigQuery.

Logica compiles to StandardSQL and gives you access to the power of BigQuery engine with the convenience of logic programming syntax. This is useful because BigQuery is magnitudes more powerful than state of the art native logic programming engines.

We encourage you to try Logica, especially if

  • you already use logic programming and need more computational power, or
  • you use SQL, but feel unsatisfied about its readability, or
  • you want to learn logic programming and apply it to processing of Big Data.

In the future we plan to support more SQL dialects and engines.

I have not heard of logic programming. What is it?

Logic programming is a declarative programming paradigm where the program is written as a set of logical statements.

Logic programming was developed in academia from the late 60s. Prolog and Datalog are the most prominent examples of logic programming languages. Logica is a language of the Datalog family.

Datalog and relational databases start from the same idea: think of data as relations and think of data manipulation as a sequence of operations over these relations. But Datalog and SQL differ in how these operations are described. Datalog is inspired by the mathematical syntax of the first order propositional logic and SQL follows the syntax of natural language.

SQL was based on the natural language to give access to databases to the people without formal training in computer programming or mathematics. This convenience may become costly when the logic that you want to express is non trivial. There are many examples of hard-to-read SQL queries that correspond to simple logic programs.

How does Logica work?

Logica compiles the logic program into a SQL expression, so it can be executed on BigQuery, the state of the art SQL engine.

Among database theoreticians Datalog and SQL are known to be equivalent. And indeed the conversion from Datalog to SQL and back is often straightforward. However there are a few nuances, for example how to treat disjunction and negation. In Logica we tried to make choices that make understanding of the resulting SQL structure as easy as possible, thus empowering user to write programs that are executed efficiently.

Why is it called Logica?

Logica stands for Logic with aggregation.

How to learn?

Learn basics of Logica with the CoLab tutorial located at tutorial folder. See examples of using Logica in examples folder.

Tutorial and examples show how to access Logica from CoLab. You can also install Logica command line tool.

Prerequisites

To run Logica programs on BigQuery you will need a Google Cloud Project. Once you have a project you can run Logica programs in CoLab providing your project id.

To run Logica locally you need Python3.

To initiate Logica predicates execution from the command line you will need bq, a BigQuery command line tool. For that you need to install Google Cloud SDK.

Installation

Google Cloud Project is the only thing you need to run Logica in Colab, see Hello World example.

You can install Logica command with pip as follows.

# Install.
python3 -m pip install logica
# Run:
# To see usage message.
python3 -m logica
# To print SQL for HelloWorld program.
python3 -m logica - print Greet <<<'Greet(greeting: "Hello world!")'

If your PATH includes Python's bin folder then you will also be able to run it simply as

logica - print Greet <<<'Greet(greeting: "Hello world!")'

Alternatively, you can clone GitHub repository:

git clone https://github.com/evgskv/logica
cd logica
./logica - print Greet <<<'Greet(greeting: "Hello world!")'

Code samples

Here a couple examples of how Logica code looks like.

Prime numbers

Find prime numbers less than 30.

Program primes.l:

# Define natural numbers from 1 to 29.
N(x) :- x in Range(30);
# Define primes.
Prime(prime: x) :-
  N(x),
  x > 1,
  ~(
    N(y),
    y > 1,
    y != x,
    x % y == 0
  );

Running primes.l

$ logica primes.l run Prime
+-------+
| prime |
+-------+
|     2 |
|     3 |
|     5 |
|     7 |
|    11 |
|    13 |
|    17 |
|    19 |
|    23 |
|    29 |
+-------+

News mentions

Who was mentioned in the news in 2020 the most? Let's query GDELT Project dataset.

Program mentions.l

@OrderBy(Mentions, "mentions desc");
@Limit(Mentions, 10);
Mentions(person:, mentions? += 1) distinct :-
  gdelt-bq.gdeltv2.gkg(persons:, date:),
  Substr(ToString(date), 0, 4) == "2020",
  the_persons == Split(persons, ";"),
  person in the_persons;

Running mentions.l

$ logica mentions.l run Mentions
+----------------+----------+
|     person     | mentions |
+----------------+----------+
| donald trump   |  3624228 |
| joe biden      |  1591320 |
| los angeles    |  1221998 |
| george floyd   |   923472 |
| boris johnson  |   845955 |
| barack obama   |   541672 |
| vladimir putin |   486428 |
| bernie sanders |   409224 |
| andrew cuomo   |   375594 |
| nancy pelosi   |   375373 |
+----------------+----------+

Note that cities of Los Angeles and Las Vegas are mentioned in this table due to known missclasification issue in the GDELT data analysis.

Feedback

Feel free to create github issues for bugs and feature requests.

You questions and comments are welcome at our github discussions!


Unless otherwise noted, the Logica source files are distributed under the Apache 2.0 license found in the LICENSE file.

This is not an officially supported Google product.

Owner
Evgeny Skvortsov
Software Engineer
Evgeny Skvortsov
Records is a very simple, but powerful, library for making raw SQL queries to most relational databases.

Records: SQL for Humans™ Records is a very simple, but powerful, library for making raw SQL queries to most relational databases. Just write SQL. No b

Kenneth Reitz 6.9k Jan 03, 2023
Generate database table diagram from SQL data definition.

sql2diagram Generate database table diagram from SQL data definition. e.g. "CREATE TABLE ..." See Example below How does it works? Analyze the SQL to

django-cas-ng 1 Feb 08, 2022
A Python library for Cloudant and CouchDB

Cloudant Python Client This is the official Cloudant library for Python. Installation and Usage Getting Started API Reference Related Documentation De

Cloudant 162 Dec 19, 2022
Import entity definition document into SQLie3. Manage the entity. Also, create a "Create Table SQL file".

EntityDocumentMaker Version 1.00 After importing the entity definition (Excel file), store the data in sqlite3. エンティティ定義(Excelファイル)をインポートした後、データをsqlit

G-jon FujiYama 1 Jan 09, 2022
This is a repository for a task assigned to me by Bilateral solutions!

Processing-Files-using-MySQL This is a repository for a task assigned to me by Bilateral solutions! Task: Make Folders named Processing,queue and proc

Kandal Khandeka 1 Nov 07, 2022
A Pythonic, object-oriented interface for working with MongoDB.

PyMODM MongoDB has paused the development of PyMODM. If there are any users who want to take over and maintain this project, or if you just have quest

mongodb 345 Dec 25, 2022
Python client for Apache Kafka

Kafka Python client Python client for the Apache Kafka distributed stream processing system. kafka-python is designed to function much like the offici

Dana Powers 5.1k Jan 08, 2023
High level Python client for Elasticsearch

Elasticsearch DSL Elasticsearch DSL is a high-level library whose aim is to help with writing and running queries against Elasticsearch. It is built o

elastic 3.6k Jan 03, 2023
Script em python para carregar os arquivos de cnpj dos dados públicos da Receita Federal em MYSQL.

cnpj-mysql Script em python para carregar os arquivos de cnpj dos dados públicos da Receita Federal em MYSQL. Dados públicos de cnpj no site da Receit

17 Dec 25, 2022
Easy-to-use data handling for SQL data stores with support for implicit table creation, bulk loading, and transactions.

dataset: databases for lazy people In short, dataset makes reading and writing data in databases as simple as reading and writing JSON files. Read the

Friedrich Lindenberg 4.2k Jan 02, 2023
A database migrations tool for SQLAlchemy.

Alembic is a database migrations tool written by the author of SQLAlchemy. A migrations tool offers the following functionality: Can emit ALTER statem

SQLAlchemy 1.7k Jan 01, 2023
Class to connect to XAMPP MySQL Database

MySQL-DB-Connection-Class Class to connect to XAMPP MySQL Database Basta fazer o download o mysql_connect.py e modificar os parâmetros que quiser. E d

Alexandre Pimentel 4 Jul 12, 2021
Makes it easier to write raw SQL in Python.

CoolSQL Makes it easier to write raw SQL in Python. Usage Quick Start from coolsql import Field name = Field("name") age = Field("age") condition =

Aber 7 Aug 21, 2022
A Python Object-Document-Mapper for working with MongoDB

MongoEngine Info: MongoEngine is an ORM-like layer on top of PyMongo. Repository: https://github.com/MongoEngine/mongoengine Author: Harry Marr (http:

MongoEngine 3.9k Jan 08, 2023
Official Python low-level client for Elasticsearch

Python Elasticsearch Client Official low-level client for Elasticsearch. Its goal is to provide common ground for all Elasticsearch-related code in Py

elastic 3.8k Jan 01, 2023
Pure Python MySQL Client

PyMySQL Table of Contents Requirements Installation Documentation Example Resources License This package contains a pure-Python MySQL client library,

PyMySQL 7.2k Jan 09, 2023
python-bigquery Apache-2python-bigquery (🥈34 · ⭐ 3.5K · 📈) - Google BigQuery API client library. Apache-2

Python Client for Google BigQuery Querying massive datasets can be time consuming and expensive without the right hardware and infrastructure. Google

Google APIs 550 Jan 01, 2023
A HugSQL-inspired database library for Python

PugSQL PugSQL is a simple Python interface for using parameterized SQL, in files. See pugsql.org for the documentation. To install: pip install pugsql

Dan McKinley 558 Dec 24, 2022
Make Your Company Data Driven. Connect to any data source, easily visualize, dashboard and share your data.

Redash is designed to enable anyone, regardless of the level of technical sophistication, to harness the power of data big and small. SQL users levera

Redash 22.4k Dec 30, 2022
SAP HANA Connector in pure Python

SAP HANA Database Client for Python Important Notice This public repository is read-only and no longer maintained. The active maintained alternative i

SAP Archive 299 Nov 20, 2022