Mutual Fund Recommender System. Tailor for fund transactions.

Overview

Explainable Mutual Fund Recommendation

Data

Please see 'DATA_DESCRIPTION.md' for mode detail.

Recommender System Methods

Baseline

  • Collabarative Fiiltering
  • PersonFreq
  • PersonVolume

Stable

  • LightFM Meta
  • LightFM PureCF
  • LightFM Hybrid

Advanced

  • DGL
  • GCN

Part I: Fund Recommedation

Training

Supported models
  1. Heuristic
  2. LightFM (CF/Hybrid/Meta)
  3. SMORe
# Process 3 models in parallel
bash run_all.sh 
   

   
Arugments

You can also tune the detail parameter settings of each method in training pipeline.

--use_heuristic ">
# Commonly used arguments 
--model 
    
     
--model_type 
     
      
--model_hidden_dimension 
      
       
--evaluation_metrics 
       
        
--use_heuristic 
         
        
       
      
     
    

For example, LightFM with pure-CF method

EPOCHS=10
EMBED_SIZE=64
DATE=20181231

python3 train.py \
   --path_transaction data/${DATE}/transaction_train.csv \
   --path_transaction_eval data/${DATE}/transaction_eval.csv \
   --path_user data/${DATE}/customer.csv \
   --path_item data/${DATE}/product.csv \
   --model 'LightFM' \
   --model_path 'models/lightfm' \
   --model_type 'cf' \
   --model_hidden_dimension ${EMBED_SIZE} \
   --model_max_neg_sample 100 \
   --model_loss 'warp' \
   --training_do_evaluation \
   --training_verbose \
   --training_num_epochs ${EPOCHS} \
   --training_eval_per_epochs 1 \
   --evaluation_diff \
   --evaluation_regular \
   --evaluation_metrics '[email protected]' \
   --evaluation_metrics '[email protected]' \
   --evaluation_metrics '[email protected]' \
   --evaluation_metrics '[email protected]' \
   --use_heuristic 'frequency' \
   --use_heuristic 'volume' \
   --evaluation_results_csv results/lightfm_cf_evaluation_${DATE}.csv \
   --evaluation_rec_detail_report results/lightfm_cf_rec_detail_${DATE}.tsv \
       > logs/lightfm_cf_exp_${DATE}.log

For another example, SMORe

python3 train.py \
   --path_transaction data/${DATE}/transaction_train.csv \
   --path_transaction_eval data/${DATE}/transaction_eval.csv \
   --path_user data/${DATE}/customer.csv \
   --path_item data/${DATE}/product.csv \
   --model 'SMORe' \
   --model_path 'models/smore' \
   --model_hidden_dimension ${EMBED_SIZE} \
   --model_max_neg_sample 100 \
   --model_loss 'warp' \
   --training_do_ \
   --training_verbose \
   --training_num_epochs ${EPOCHS} \
   --training_eval_per_epochs 1 \
   --evaluation_diff \
   --evaluation_regular \
   --evaluation_metrics '[email protected]' \
   --evaluation_metrics '[email protected]' \
   --evaluation_metrics '[email protected]' \
   --evaluation_metrics '[email protected]' \
   --evaluation_results_csv results/smore_evaluation_${DATE}.csv \
   --evaluation_rec_detail_report results/smore_rec_detail_${DATE}.tsv \
       > logs/smore_exp_${DATE}.log

Evaluataion

To use the evaluation pipeline, you need a prediction rec file with the format like the example below:

# prediction rec file 
   
    \t
    
     \t
     
      \t
      
       \t
       
        \t
        
          CFDAXWccjJPoVInuiF0mMg== AG25 EXPLOIT SOLO 0 2 CFDAXWccjJPoVInuiF0mMg== XXXX EXPLOIT SOLO 0 1 CFDAXWccjJPoVInuiF0mMg== JJ15 EXPLOIT REGULAR 0 2 CFDAXWccjJPoVInuiF0mMg== XXXX EXPLOIT REGULAR 0 1 CFDAwH4y/ssuYSedFy8UMw== CC89 EXPLOIT REGULAR 0 2 CFDAwH4y/ssuYSedFy8UMw== XXXX EXPLOIT REGULAR 0 1 CFDA9UDJnLAm4/0txbPMVQ== AP06 EXPLORE NA 0 2 CFDA9UDJnLAm4/0txbPMVQ== XXXX EXPLORE NA 0 1 
        
       
      
     
    
   

Later you could directly use the evaluate pipeline

bash rec_convert_eval.sh 
   

   

In the evaluation pipeline, you need to convert the ground truth interaction into '.rec' format. For xample.

# truth rec file 
   
    \t
    
     \t
     
      \t
      
       \t
       
         CFDAXWccjJPoVInuiF0mMg== AG25 EXPLOIT SOLO 1.0 CFDAXWccjJPoVInuiF0mMg== JJ15 EXPLOIT REGULAR 1.0 CFDAwH4y/ssuYSedFy8UMw== CC89 EXPLOIT REGULAR 1.0 CFDA9UDJnLAm4/0txbPMVQ== AP06 EXPLORE NA 1.0 
       
      
     
    
   

Convert from the evaluation transaction (includes the preprocess pipeline) by the following code, which will save the corresponding rec file in the defined argument '--path_trainsaction_truth'

DATE=20181231
python3 convert_to_rec.py \
    --path_transaction data/${DATE}/transaction_train.csv \
    --path_transaction_eval data/${DATE}/transaction_eval.csv \
    --path_user data/${DATE}/customer.csv \
    --path_item data/${DATE}/product.csv \
    --path_transaction_truth rec/${DATE}.eval.truth.rec

And evaluate by the code "rec_eval.py"

DATE=20181231
python3 rec_eval.py \
   -truth rec/${DATE}.eval.truth.rec \ 
   -pred rec/pred.rec \     
   -metric '[email protected]' \          
   -metric '[email protected]' \          
   -metric '[email protected]' \
   -metric '[email protected]'

The results would be like

TRUTH REC FILE EXISTED:  'rec/20181231.eval.truth.rec'

EvalDict({                
          SUBSET     USERS     EXAMPLES 
        * EXPLORE    2305      2826     
        * EXPLOIT    33355     62403    
        * REGULAR    31763     59054    
        * SOLO       2747      3349                     
})
==============================
 [email protected]     on EXPLORE    0.0001
 [email protected]     on EXPLORE    0.0004
 [email protected]   on EXPLORE    0.0004
 [email protected]   on EXPLORE    0.0004
 [email protected]     on EXPLOIT    0.0000
 [email protected]     on EXPLOIT    0.0001
 [email protected]   on EXPLOIT    0.0001
 [email protected]   on EXPLOIT    0.0001
 [email protected]     on REGULAR    0.0000
 [email protected]     on REGULAR    0.0001
 [email protected]   on REGULAR    0.0001
 [email protected]   on REGULAR    0.0001
 [email protected]     on SOLO       0.0001
 [email protected]     on SOLO       0.0004
 [email protected]   on SOLO       0.0004
 [email protected]   on SOLO       0.0004
==============================

Results

Methods [email protected] [email protected] [email protected] [email protected]
Collabarative Fiiltering - - -
PersonFreq - - -
PersonVolume - - -
LightFM Meta - - -
LightFM PureCF - - -
LightFM Hybrid 0.000 0.000 0.000 0.000
DGL - - -
GCN - - -

Fund Explanation

Owner
JHJu
Research assistant @ cnc Lab, ASCITI
JHJu
Fast Python Collaborative Filtering for Implicit Feedback Datasets

Implicit Fast Python Collaborative Filtering for Implicit Datasets. This project provides fast Python implementations of several different popular rec

Ben Frederickson 3k Dec 31, 2022
Incorporating User Micro-behaviors and Item Knowledge 59 60 3 into Multi-task Learning for Session-based Recommendation

MKM-SR Incorporating User Micro-behaviors and Item Knowledge into Multi-task Learning for Session-based Recommendation Paper data and code This is the

ciecus 38 Dec 05, 2022
The source code for "Global Context Enhanced Graph Neural Network for Session-based Recommendation".

GCE-GNN Code This is the source code for SIGIR 2020 Paper: Global Context Enhanced Graph Neural Networks for Session-based Recommendation. Requirement

98 Dec 28, 2022
Recommender System Papers

Included Conferences: SIGIR 2020, SIGKDD 2020, RecSys 2020, CIKM 2020, AAAI 2021, WSDM 2021, WWW 2021

RUCAIBox 704 Jan 06, 2023
A movie recommender which recommends the movies belonging to the genre that user has liked the most.

Content-Based-Movie-Recommender-System This model relies on the similarity of the items being recommended. (I have used Pandas and Numpy. However othe

Srinivasan K 0 Mar 31, 2022
A tensorflow implementation of the RecoGCN model in a CIKM'19 paper, titled with "Relation-Aware Graph Convolutional Networks for Agent-Initiated Social E-Commerce Recommendation".

This repo contains a tensorflow implementation of RecoGCN and the experiment dataset Running the RecoGCN model python train.py Example training outp

xfl15 30 Nov 25, 2022
Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'.

COTREC Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'. Requirements: Python 3.7, Pytorch 1.6.0 Best Hype

Xin Xia 43 Jan 04, 2023
Graph Neural Networks for Recommender Systems

This repository contains code to train and test GNN models for recommendation, mainly using the Deep Graph Library (DGL).

217 Jan 04, 2023
[ICDMW 2020] Code and dataset for "DGTN: Dual-channel Graph Transition Network for Session-based Recommendation"

DGTN: Dual-channel Graph Transition Network for Session-based Recommendation This repository contains PyTorch Implementation of ICDMW 2020 (NeuRec @ I

Yujia 25 Nov 17, 2022
Deep recommender models using PyTorch.

Spotlight uses PyTorch to build both deep and shallow recommender models. By providing both a slew of building blocks for loss functions (various poin

Maciej Kula 2.8k Dec 29, 2022
Hierarchical Fashion Graph Network for Personalized Outfit Recommendation, SIGIR 2020

hierarchical_fashion_graph_network This is our Tensorflow implementation for the paper: Xingchen Li, Xiang Wang, Xiangnan He, Long Chen, Jun Xiao, and

LI Xingchen 70 Dec 05, 2022
An open source movie recommendation WebApp build by movie buffs and mathematicians that uses cosine similarity on the backend.

Movie Pundit Find your next flick by asking the (almost) all-knowing Movie Pundit Jump to Project Source » View Demo · Report Bug · Request Feature Ta

Kapil Pramod Deshmukh 8 May 28, 2022
Group-Buying Recommendation for Social E-Commerce

Group-Buying Recommendation for Social E-Commerce This is the official implementation of the paper Group-Buying Recommendation for Social E-Commerce (

Jun Zhang 37 Nov 28, 2022
Temporal Meta-path Guided Explainable Recommendation (WSDM2021)

Temporal Meta-path Guided Explainable Recommendation (WSDM2021) TMER Code of paper "Temporal Meta-path Guided Explainable Recommendation". Requirement

Yicong Li 13 Nov 30, 2022
Code for MB-GMN, SIGIR 2021

MB-GMN Code for MB-GMN, SIGIR 2021 For Beibei data, run python .\labcode.py For Tmall data, run python .\labcode.py --data tmall --rank 2 For IJCAI

32 Dec 04, 2022
基于个性化推荐的音乐播放系统

MusicPlayer 基于个性化推荐的音乐播放系统 Hi, 这是我在大四的时候做的毕设,现如今将该项目开源。 本项目是基于Python的tkinter和pygame所著。 该项目总体来说,代码比较烂(因为当时水平很菜)。 运行的话安装几个基本库就能跑,只不过里面的数据还没有上传至Github。 先

Cedric Niu 6 Nov 19, 2022
EXEMPLO DE SISTEMA ESPECIALISTA PARA RECOMENDAR SERIADOS EM PYTHON

exemplo-de-sistema-especialista EXEMPLO DE SISTEMA ESPECIALISTA PARA RECOMENDAR SERIADOS EM PYTHON Resumo O objetivo de auxiliar o usuário na escolha

Josue Lopes 3 Aug 31, 2021
NVIDIA Merlin is an open source library designed to accelerate recommender systems on NVIDIA’s GPUs.

NVIDIA Merlin is an open source library providing end-to-end GPU-accelerated recommender systems, from feature engineering and preprocessing to training deep learning models and running inference in

420 Jan 04, 2023
Code for my ORSUM, ACM RecSys 2020, HeroGRAPH: A Heterogeneous Graph Framework for Multi-Target Cross-Domain Recommendation

HeroGRAPH Code for my ORSUM @ RecSys 2020, HeroGRAPH: A Heterogeneous Graph Framework for Multi-Target Cross-Domain Recommendation Paper, workshop pro

Qiang Cui 9 Sep 14, 2022
Cloud-based recommendation system

This project is based on cloud services to create data lake, ETL process, train and deploy learning model to implement a recommendation system.

Yi Ding 1 Feb 02, 2022