Location-Sensitive Visual Recognition with Cross-IOU Loss

Overview

The trained models are temporarily unavailable, but you can train the code using reasonable computational resource.

Location-Sensitive Visual Recognition with Cross-IOU Loss

by Kaiwen Duan, Lingxi Xie, Honggang Qi, Song Bai, Qingming Huang and Qi Tian

The code to train and evaluate the proposed LSNet is available here. For more technical details, please refer to our arXiv paper.

The location-sensitive visual recognition tasks, including object detection, instance segmentation, and human pose estimation, can be formulated into localizing an anchor point (in red) and a set of landmarks (in green). Our work aims to offer a unified framework for these tasks.

Abstract

Object detection, instance segmentation, and pose estimation are popular visual recognition tasks which require localizing the object by internal or boundary landmarks. This paper summarizes these tasks as location-sensitive visual recognition and proposes a unified solution named location-sensitive network (LSNet). Based on a deep neural network as the backbone, LSNet predicts an anchor point and a set of landmarks which together define the shape of the target object. The key to optimizing the LSNet lies in the ability of fitting various scales, for which we design a novel loss function named cross-IOU loss that computes the cross-IOU of each anchor-landmark pair to approximate the global IOU between the prediction and groundtruth. The flexibly located and accurately predicted landmarks also enable LSNet to incorporate richer contextual information for visual recognition. Evaluated on the MSCOCO dataset, LSNet set the new state-of-the-art accuracy for anchor-free object detection (a 53.5% box AP) and instance segmentation (a 40.2% mask AP), and shows promising performance in detecting multi-scale human poses.

If you encounter any problems in using our code, please contact Kaiwen Duan: [email protected]

Bbox AP(%) on COCO test-dev

Method Backbone epoch MStrain AP AP50 AP75 APS APM APL
Anchor-based:
Libra R-CNN X-101-64x4d 12 N 43.0 64.0 47.0 25.3 45.6 54.6
AB+FSAF* X-101-64x4d 18 Y 44.6 65.2 48.6 29.7 47.1 54.6
FreeAnchor* X-101-32x8d 24 Y 47.3 66.3 51.5 30.6 50.4 59.0
GFLV1* X-101-32x8d 24 Y 48.2 67.4 52.6 29.2 51.7 60.2
ATSS* X-101-64x4d-DCN 24 Y 50.7 68.9 56.3 33.2 52.9 62.4
PAA* X-101-64x4d-DCN 24 Y 51.4 69.7 57.0 34.0 53.8 64.0
GFLV2* R2-101-DCN 24 Y 53.3 70.9 59.2 35.7 56.1 65.6
YOLOv4-P7* CSP-P7 450 Y 56.0 73.3 61.2 38.9 60.0 68.6
Anchor-free:
ExtremeNet* HG-104 200 Y 43.2 59.8 46.4 24.1 46.0 57.1
RepPointsV1* R-101-DCN 24 Y 46.5 67.4 50.9 30.3 49.7 57.1
SAPD X-101-64x4d-DCN 24 Y 47.4 67.4 51.1 28.1 50.3 61.5
CornerNet* HG-104 200 Y 42.1 57.8 45.3 20.8 44.8 56.7
DETR R-101 500 Y 44.9 64.7 47.7 23.7 49.5 62.3
CenterNet* HG-104 190 Y 47.0 64.5 50.7 28.9 49.9 58.9
CPNDet* HG-104 100 Y 49.2 67.4 53.7 31.0 51.9 62.4
BorderDet* X-101-64x4d-DCN 24 Y 50.3 68.9 55.2 32.8 52.8 62.3
FCOS-BiFPN X-101-32x8-DCN 24 Y 50.4 68.9 55.0 33.2 53.0 62.7
RepPointsV2* X-101-64x4d-DCN 24 Y 52.1 70.1 57.5 34.5 54.6 63.6
LSNet R-50 24 Y 44.8 64.1 48.8 26.6 47.7 55.7
LSNet X-101-64x4d 24 Y 48.2 67.6 52.6 29.6 51.3 60.5
LSNet X-101-64x4d-DCN 24 Y 49.6 69.0 54.1 30.3 52.8 62.8
LSNet-CPV X-101-64x4d-DCN 24 Y 50.4 69.4 54.5 31.0 53.3 64.0
LSNet-CPV R2-101-DCN 24 Y 51.1 70.3 55.2 31.2 54.3 65.0
LSNet-CPV* R2-101-DCN 24 Y 53.5 71.1 59.2 35.2 56.4 65.8

A comparison between LSNet and the sate-of-the-art methods in object detection on the MS-COCO test-dev set. LSNet surpasses all competitors in the anchor-free group. The abbreviations are: ‘R’ – ResNet, ‘X’ – ResNeXt, ‘HG’ – Hourglass network, ‘R2’ – Res2Net, ‘CPV’ – corner point verification, ‘MStrain’ – multi-scale training, * – multi-scale testing.

Segm AP(%) on COCO test-dev

Method Backbone epoch AP AP50 AP75 APS APM APL
Pixel-based:
YOLACT R-101 48 31.2 50.6 32.8 12.1 33.3 47.1
TensorMask R-101 72 37.1 59.3 39.4 17.1 39.1 51.6
Mask R-CNN X-101-32x4d 12 37.1 60.0 39.4 16.9 39.9 53.5
HTC X-101-64x4d 20 41.2 63.9 44.7 22.8 43.9 54.6
DetectoRS* X-101-64x4d 40 48.5 72.0 53.3 31.6 50.9 61.5
Contour-based:
ExtremeNet HG-104 100 18.9 44.5 13.7 10.4 20.4 28.3
DeepSnake DLA-34 120 30.3 - - - - -
PolarMask X-101-64x4d-DCN 24 36.2 59.4 37.7 17.8 37.7 51.5
LSNet X-101-64x4d-DCN 30 37.6 64.0 38.3 22.1 39.9 49.1
LSNet R2-101-DCN 30 38.0 64.6 39.0 22.4 40.6 49.2
LSNet* X-101-64x4d-DCN 30 39.7 65.5 41.3 25.5 41.3 50.4
LSNet* R2-101-DCN 30 40.2 66.2 42.1 25.8 42.2 51.0

Comparison of LSNet to the sate-of-the-art methods in instance segmentation task on the COCO test-dev set. Our LSNet achieves the state-of-the-art accuracy for contour-based instance segmentation. ‘R’ - ResNet, ‘X’ - ResNeXt, ‘HG’ - Hourglass, ‘R2’ - Res2Net, * - multi-scale testing.

Keypoints AP(%) on COCO test-dev

Method Backbone epoch AP AP50 AP75 APM APL
Heatmap-based:
CenterNet-jd DLA-34 320 57.9 84.7 63.1 52.5 67.4
OpenPose VGG-19 - 61.8 84.9 67.5 58.0 70.4
Pose-AE HG 300 62.8 84.6 69.2 57.5 70.6
CenterNet-jd HG104 150 63.0 86.8 69.6 58.9 70.4
Mask R-CNN R-50 28 63.1 87.3 68.7 57.8 71.4
PersonLab R-152 >1000 66.5 85.5 71.3 62.3 70.0
HRNet HRNet-W32 210 74.9 92.5 82.8 71.3 80.9
Regression-based:
CenterNet-reg [66] DLA-34 320 51.7 81.4 55.2 44.6 63.0
CenterNet-reg [66] HG-104 150 55.0 83.5 59.7 49.4 64.0
LSNet w/ obj-box X-101-64x4d-DCN 60 55.7 81.3 61.0 52.9 60.5
LSNet w/ kps-box X-101-64x4d-DCN 20 59.0 83.6 65.2 53.3 67.9

Comparison of LSNet to the sate-of-the-art methods in pose estimation task on the COCO test-dev set. LSNet predict the keypoints by regression. ‘obj-box’ and ‘kps-box’ denote the object bounding boxes and the keypoint-boxes, respectively. For LSNet w/ kps-box, we fine-tune the model from the LSNet w/ kps-box for another 20 epochs.

Visualization

Some location-sensitive visual recognition results on the MS-COCO validation set.

We compared with the CenterNet to show that our LSNet w/ ‘obj-box’ tends to predict more human pose of small scales, which are not annotated on the dataset. Only pose results with scores higher than 0:3 are shown for both methods.

Left: LSNet uses the object bounding boxes to assign training samples. Right: LSNet uses the keypoint-boxes to assign training samples. Although LSNet with keypoint-boxes enjoys higher AP score, its ability of perceiving multi-scale human instances is weakened.

Preparation

The master branch works with PyTorch 1.5.0

The dataset directory should be like this:

├── data
│   ├── coco
│   │   ├── annotations
│   │   ├── images
            ├── train2017
            ├── val2017
            ├── test2017

Generate extreme point annotation from segmentation:

  • cd code/tools
  • python gen_coco_lsvr.py
  • cd ..

Installation

1. Installing cocoapi
  • cd cocoapi/pycocotools
  • python setup.py develop
  • cd ../..
2. Installing mmcv
  • cd mmcv
  • pip install -e.
  • cd ..
3. Installing mmdet
  • python setup.py develop

Training and Evaluation

Our LSNet is based on mmdetection. Please check with existing dataset for Training and Evaluation.

Owner
Kaiwen Duan
Kaiwen Duan
Minimal implementation of Denoised Smoothing: A Provable Defense for Pretrained Classifiers in TensorFlow.

Denoised-Smoothing-TF Minimal implementation of Denoised Smoothing: A Provable Defense for Pretrained Classifiers in TensorFlow. Denoised Smoothing is

Sayak Paul 19 Dec 11, 2022
Weakly supervised medical named entity classification

Trove Trove is a research framework for building weakly supervised (bio)medical named entity recognition (NER) and other entity attribute classifiers

60 Nov 18, 2022
A implemetation of the LRCN in mxnet

A implemetation of the LRCN in mxnet ##Abstract LRCN is a combination of CNN and RNN ##Installation Download UCF101 dataset ./avi2jpg.sh to split the

44 Aug 25, 2022
Evaluating AlexNet features at various depths

Linear Separability Evaluation This repo provides the scripts to test a learned AlexNet's feature representation performance at the five different con

Yuki M. Asano 32 Dec 30, 2022
Cweqgen - The CW Equation Generator

The CW Equation Generator The cweqgen (pronouced like "Queck-Jen") package provi

2 Jan 15, 2022
This is an official implementation for the WTW Dataset in "Parsing Table Structures in the Wild " on table detection and table structure recognition.

WTW-Dataset This is an official implementation for the WTW Dataset in "Parsing Table Structures in the Wild " on ICCV 2021. Here, you can download the

109 Dec 29, 2022
Jittor Medical Segmentation Lib -- The assignment of Pattern Recognition course (2021 Spring) in Tsinghua University

THU模式识别2021春 -- Jittor 医学图像分割 模型列表 本仓库收录了课程作业中同学们采用jittor框架实现的如下模型: UNet SegNet DeepLab V2 DANet EANet HarDNet及其改动HarDNet_alter PSPNet OCNet OCRNet DL

48 Dec 26, 2022
Numerai tournament example scripts using NN and optuna

numerai_NN_example Numerai tournament example scripts using pytorch NN, lightGBM and optuna https://numer.ai/tournament Performance of my model based

Takahiro Maeda 12 Oct 10, 2022
4K videos with annotated masks in our ICCV2021 paper 'Internal Video Inpainting by Implicit Long-range Propagation'.

Annotated 4K Videos paper | project website | code | demo video 4K videos with annotated object masks in our ICCV2021 paper: Internal Video Inpainting

Tengfei Wang 21 Nov 05, 2022
Use your Philips Hue lights as Racing Flags. Works with Assetto Corsa, Assetto Corsa Competizione and iRacing.

phue-racing-flags Use your Philips Hue lights as Racing Flags. Explore the docs » Report Bug · Request Feature Table of Contents About The Project Bui

50 Sep 03, 2022
Collection of generative models in Pytorch version.

pytorch-generative-model-collections Original : [Tensorflow version] Pytorch implementation of various GANs. This repository was re-implemented with r

Hyeonwoo Kang 2.4k Dec 31, 2022
Post-Training Quantization for Vision transformers.

PTQ4ViT Post-Training Quantization Framework for Vision Transformers. We use the twin uniform quantization method to reduce the quantization error on

Zhihang Yuan 61 Dec 28, 2022
A paper using optimal transport to solve the graph matching problem.

GOAT A paper using optimal transport to solve the graph matching problem. https://arxiv.org/abs/2111.05366 Repo structure .github: Files specifying ho

neurodata 8 Jan 04, 2023
Predict and time series avocado hass

RECOMMENDER SYSTEM MARKETING TỔNG QUAN VỀ HỆ THỐNG DỮ LIỆU 1. Giới thiệu - Tiki là một hệ sinh thái thương mại "all in one", trong đó có tiki.vn, là

hieulmsc 3 Jan 10, 2022
Repo for EMNLP 2021 paper "Beyond Preserved Accuracy: Evaluating Loyalty and Robustness of BERT Compression"

beyond-preserved-accuracy Repo for EMNLP 2021 paper "Beyond Preserved Accuracy: Evaluating Loyalty and Robustness of BERT Compression" How to implemen

Kevin Canwen Xu 10 Dec 23, 2022
Code for AA-RMVSNet: Adaptive Aggregation Recurrent Multi-view Stereo Network (ICCV 2021).

AA-RMVSNet Code for AA-RMVSNet: Adaptive Aggregation Recurrent Multi-view Stereo Network (ICCV 2021) in PyTorch. paper link: arXiv | CVF Change Log Ju

Qingtian Zhu 97 Dec 30, 2022
A small tool to joint picture including gif

README 做设计的时候遇到拼接长图的情况,但是发现没有什么好用的能拼接gif的工具。 于是自己写了个gif拼接小工具。 可以自动拼接gif、png和jpg等常见格式。 效果 从上至下 从下至上 从左至右 从右至左 使用 克隆仓库 git clone https://github.com/Dels

3 Dec 15, 2021
Run Effective Large Batch Contrastive Learning on Limited Memory GPU

Gradient Cache Gradient Cache is a simple technique for unlimitedly scaling contrastive learning batch far beyond GPU memory constraint. This means tr

Luyu Gao 198 Dec 29, 2022
Serve TensorFlow ML models with TF-Serving and then create a Streamlit UI to use them

TensorFlow Serving + Streamlit! ✨ 🖼️ Serve TensorFlow ML models with TF-Serving and then create a Streamlit UI to use them! This is a pretty simple S

Álvaro Bartolomé 18 Jan 07, 2023
Mosaic of Object-centric Images as Scene-centric Images (MosaicOS) for long-tailed object detection and instance segmentation.

MosaicOS Mosaic of Object-centric Images as Scene-centric Images (MosaicOS) for long-tailed object detection and instance segmentation. Introduction M

Cheng Zhang 27 Oct 12, 2022