Official implementation of MSR-GCN (ICCV 2021 paper)

Overview

MSR-GCN

Official implementation of MSR-GCN: Multi-Scale Residual Graph Convolution Networks for Human Motion Prediction (ICCV 2021 paper)

[Paper] [Supp] [Poster] [Slides]

Authors

  1. Lingwei Dang, School of Computer Science and Engineering, South China University of Technology, China, [email protected]
  2. Yongwei Nie, School of Computer Science and Engineering, South China University of Technology, China, [email protected]
  3. Chengjiang Long, JD Finance America Corporation, USA, [email protected]
  4. Qing Zhang, School of Computer Science and Engineering, Sun Yat-sen University, China, [email protected]
  5. Guiqing Li, School of Computer Science and Engineering, South China University of Technology, China, [email protected]

Overview

    Human motion prediction is a challenging task due to the stochasticity and aperiodicity of future poses. Recently, graph convolutional network (GCN) has been proven to be very effective to learn dynamic relations among pose joints, which is helpful for pose prediction. On the other hand, one can abstract a human pose recursively to obtain a set of poses at multiple scales. With the increase of the abstraction level, the motion of the pose becomes more stable, which benefits pose prediction too. In this paper, we propose a novel multi-scale residual Graph Convolution Network (MSR-GCN) for human pose prediction task in the manner of end-to-end. The GCNs are used to extract features from fine to coarse scale and then from coarse to fine scale. The extracted features at each scale are then combined and decoded to obtain the residuals between the input and target poses. Intermediate supervisions are imposed on all the predicted poses, which enforces the network to learn more representative features. Our proposed approach is evaluated on two standard benchmark datasets, i.e., the Human3.6M dataset and the CMU Mocap dataset. Experimental results demonstrate that our method outperforms the state-of-the-art approaches.

Dependencies

  • Pytorch 1.7.0+cu110
  • Python 3.8.5
  • Nvidia RTX 3090

Get the data

Human3.6m in exponential map can be downloaded from here.

CMU mocap was obtained from the repo of ConvSeq2Seq paper.

About datasets

Human3.6M

  • A pose in h3.6m has 32 joints, from which we choose 22, and build the multi-scale by 22 -> 12 -> 7 -> 4 dividing manner.
  • We use S5 / S11 as test / valid dataset, and the rest as train dataset, testing is done on the 15 actions separately, on each we use all data instead of the randomly selected 8 samples.
  • Some joints of the origin 32 have the same position
  • The input / output length is 10 / 25

CMU Mocap dataset

  • A pose in cmu has 38 joints, from which we choose 25, and build the multi-scale by 25 -> 12 -> 7 -> 4 dividing manner.
  • CMU does not have valid dataset, testing is done on the 8 actions separately, on each we use all data instead of the random selected 8 samples.
  • Some joints of the origin 38 have the same position
  • The input / output length is 10 / 25

Train

  • train on Human3.6M:

    python main.py --exp_name=h36m --is_train=1 --output_n=25 --dct_n=35 --test_manner=all

  • train on CMU Mocap:

    python main.py --exp_name=cmu --is_train=1 --output_n=25 --dct_n=35 --test_manner=all

Evaluate and visualize results

  • evaluate on Human3.6M:

    python main.py --exp_name=h36m --is_load=1 --model_path=ckpt/pretrained/h36m_in10out25dctn35_best_err57.9256.pth --output_n=25 --dct_n=35 --test_manner=all

  • evaluate on CMU Mocap:

    python main.py --exp_name=cmu --is_load=1 --model_path=ckpt/pretrained/cmu_in10out25dctn35_best_err37.2310.pth --output_n=25 --dct_n=35 --test_manner=all

Results

H3.6M-10/25/35-all 80 160 320 400 560 1000 -
walking 12.16 22.65 38.65 45.24 52.72 63.05 -
eating 8.39 17.05 33.03 40.44 52.54 77.11 -
smoking 8.02 16.27 31.32 38.15 49.45 71.64 -
discussion 11.98 26.76 57.08 69.74 88.59 117.59 -
directions 8.61 19.65 43.28 53.82 71.18 100.59 -
greeting 16.48 36.95 77.32 93.38 116.24 147.23 -
phoning 10.10 20.74 41.51 51.26 68.28 104.36 -
posing 12.79 29.38 66.95 85.01 116.26 174.33 -
purchases 14.75 32.39 66.13 79.63 101.63 139.15 -
sitting 10.53 21.99 46.26 57.80 78.19 120.02 -
sittingdown 16.10 31.63 62.45 76.84 102.83 155.45 -
takingphoto 9.89 21.01 44.56 56.30 77.94 121.87 -
waiting 10.68 23.06 48.25 59.23 76.33 106.25 -
walkingdog 20.65 42.88 80.35 93.31 111.87 148.21 -
walkingtogether 10.56 20.92 37.40 43.85 52.93 65.91 -
Average 12.11 25.56 51.64 62.93 81.13 114.18 57.93

CMU-10/25/35-all 80 160 320 400 560 1000 -
basketball 10.24 18.64 36.94 45.96 61.12 86.24 -
basketball_signal 3.04 5.62 12.49 16.60 25.43 49.99 -
directing_traffic 6.13 12.60 29.37 39.22 60.46 114.56 -
jumping 15.19 28.85 55.97 69.11 92.38 126.16 -
running 13.17 20.91 29.88 33.37 38.26 43.62 -
soccer 10.92 19.40 37.41 47.00 65.25 101.85 -
walking 6.38 10.25 16.88 20.05 25.48 36.78 -
washwindow 5.41 10.93 24.51 31.79 45.13 70.16 -
Average 8.81 15.90 30.43 37.89 51.69 78.67 37.23

Train

  • train on Human3.6M: python main.py --expname=h36m --is_train=1 --output_n=25 --dct_n=35 --test_manner=all
  • train on CMU Mocap: python main.py --expname=cmu --is_train=1 --output_n=25 --dct_n=35 --test_manner=all

Citation

If you use our code, please cite our work

@InProceedings{Dang_2021_ICCV,
    author    = {Dang, Lingwei and Nie, Yongwei and Long, Chengjiang and Zhang, Qing and Li, Guiqing},
    title     = {MSR-GCN: Multi-Scale Residual Graph Convolution Networks for Human Motion Prediction},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {11467-11476}
}

Acknowledgments

Some of our evaluation code and data process code was adapted/ported from LearnTrajDep by Wei Mao.

Licence

MIT

Owner
LevonDang
Pursuing the M.E. degree with the School of Computer Science and Engineering, South China University of Technology, 2020-.
LevonDang
Repository for the "Gotta Go Fast When Generating Data with Score-Based Models" paper

Gotta Go Fast When Generating Data with Score-Based Models This repo contains the official implementation for the paper Gotta Go Fast When Generating

Alexia Jolicoeur-Martineau 89 Nov 09, 2022
Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling

Parallel Tacotron2 Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling

Keon Lee 170 Dec 27, 2022
A modular application for performing anomaly detection in networks

Deep-Learning-Models-for-Network-Annomaly-Detection The modular app consists for mainly three annomaly detection algorithms. The system supports model

Shivam Patel 1 Dec 09, 2021
Code release for DS-NeRF (Depth-supervised Neural Radiance Fields)

Depth-supervised NeRF: Fewer Views and Faster Training for Free Project | Paper | YouTube Pytorch implementation of our method for learning neural rad

524 Jan 08, 2023
Which Style Makes Me Attractive? Interpretable Control Discovery and Counterfactual Explanation on StyleGAN

Interpretable Control Exploration and Counterfactual Explanation (ICE) on StyleGAN Which Style Makes Me Attractive? Interpretable Control Discovery an

Bo Li 11 Dec 01, 2022
Fibonacci Method Gradient Descent

An implementation of the Fibonacci method for gradient descent, featuring a TKinter GUI for inputting the function / parameters to be examined and a matplotlib plot of the function and results.

Emma 1 Jan 28, 2022
Code for Talk-to-Edit (ICCV2021). Paper: Talk-to-Edit: Fine-Grained Facial Editing via Dialog.

Talk-to-Edit (ICCV2021) This repository contains the implementation of the following paper: Talk-to-Edit: Fine-Grained Facial Editing via Dialog Yumin

Yuming Jiang 221 Jan 07, 2023
PyTorch Implementation of DSB for Score Based Generative Modeling. Experiments managed using Hydra.

Diffusion Schrödinger Bridge with Applications to Score-Based Generative Modeling This repository contains the implementation for the paper Diffusion

James Thornton 50 Jan 03, 2023
Repository of continual learning papers

Continual learning paper repository This repository contains an incomplete (but dynamically updated) list of papers exploring continual learning in ma

29 Jan 05, 2023
Makes patches from huge resolution .svs slide files using openslide

openslide_patcher Makes patches from huge resolution .svs slide files using openslide Example collage I made from outputs:

2 Dec 23, 2021
Semantic Segmentation with SegFormer on Drone Dataset.

SegFormer_Segmentation Semantic Segmentation with SegFormer on Drone Dataset. You can check out the blog on Medium You can also try out the model with

Praneet 8 Oct 20, 2022
Visualizing Yolov5's layers using GradCam

YOLO-V5 GRADCAM I constantly desired to know to which part of an object the object-detection models pay more attention. So I searched for it, but I di

Pooya Mohammadi Kazaj 200 Jan 01, 2023
My solution for the 7th place / 245 in the Umoja Hack 2022 challenge

Umoja Hack 2022 : Insurance Claim Challenge My solution for the 7th place / 245 in the Umoja Hack 2022 challenge Umoja Hack Africa is a yearly hackath

Souames Annis 17 Jun 03, 2022
Code implementation of Data Efficient Stagewise Knowledge Distillation paper.

Data Efficient Stagewise Knowledge Distillation Table of Contents Data Efficient Stagewise Knowledge Distillation Table of Contents Requirements Image

IvLabs 112 Dec 02, 2022
Automatic number plate recognition using tech: Yolo, OCR, Scene text detection, scene text recognation, flask, torch

Automatic Number Plate Recognition Automatic Number Plate Recognition (ANPR) is the process of reading the characters on the plate with various optica

Meftun AKARSU 52 Dec 22, 2022
Python parser for DTED data.

DTED Parser This is a package written in pure python (with help from numpy) to parse and investigate Digital Terrain Elevation Data (DTED) files. This

Ben Bonenfant 12 Dec 18, 2022
Vanilla and Prototypical Networks with Random Weights for image classification on Omniglot and mini-ImageNet. Made with Python3.

vanilla-rw-protonets-project Vanilla Prototypical Networks and PNs with Random Weights for image classification on Omniglot and mini-ImageNet. Made wi

Giovani Candido 8 Aug 31, 2022
2021 National Underwater Robotics Vision Optics

2021-National-Underwater-Robotics-Vision-Optics 2021年全国水下机器人算法大赛-光学赛道-B榜精度第18名 (Kilian_Di的团队:A榜[email pro

Di Chang 9 Nov 04, 2022
Sample Code for "Pessimism Meets Invariance: Provably Efficient Offline Mean-Field Multi-Agent RL"

Sample Code for "Pessimism Meets Invariance: Provably Efficient Offline Mean-Field Multi-Agent RL" This is the official codebase for Pessimism Meets I

3 Sep 19, 2022
Image super-resolution through deep learning

srez Image super-resolution through deep learning. This project uses deep learning to upscale 16x16 images by a 4x factor. The resulting 64x64 images

David Garcia 5.3k Dec 28, 2022