Implementation of CVPR 2020 Dual Super-Resolution Learning for Semantic Segmentation

Related tags

Deep LearningDSRL
Overview

Dual super-resolution learning for semantic segmentation

2021-01-02 Subpixel Update

Happy new year! The 2020-12-29 update of SISR with subpixel conv performs bad in my experiment so I did some changes to it.

The former subpixel version is depreciated now. Click here to learn more. If you are using the main branch then you can just ignore this message.

2020-12-29 New branch: subpixel

  • In this new branch, SISR path changes to follow the design of Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network, CVPR 2016. The main branch still uses Deconv so if you prefer the older version you can simply ignore this update.
  • I haven't run a full test on this new framework yet so I'm still not sure about it's performance on validation set. Please let me know if you find this new framework performs better. Thank you. :)

2020-12-15 Pretrained Weights Uploaded (Only for the main branch)

  • See Google Drive (Please note that you don't have to unzip this file.)
  • Use the pretrained weights by train.py --resume 'path/to/weights'

2020-10-31 Good News! I achieved an mIoU of 0.6787 in the newest experiment(the experiment is still running and the final mIoU may be even higher)!

  • So the FA module should be places after each path's final output.
  • The FTM should be 19 channel -> 3 channel
  • Hyper-Parameter fine-tuning

It's amazing that the final model converges at a extremely fast speed. Now the codes are all set, just clone this repo and run train.py!

And thanks for the reminder of @XinruiYuan, currently this repo also differs from the original paper in the architecture of SISR path. I will be working on it after finishing my homework.

2020-10-22 First commit

I implemented the framework proposed in this paper since the authors' code is still under legal scan and i just can't wait to see the results. This repo is based on Deeplab v3+ and Cityscapes, and i still have problems about the FA module.

  • so the code is runnable? yes. just run train.py directly and you can see DSRL starts training.(of course change the dataset path. See insturctions in the Deeplab v3+ part below.)

  • any difference from the paper's proposed method? Actually yes. It's mainly about the FA module. I tried several mothods such as:

    • 19 channel SSSR output -> feature transform module -> 3 channel output -> calculate FAloss with 3 channel SISR output. Result is like a disaster
    • 19 channel SSSR last_conv(see the code and you'll know what it is) feature -> feature transform module -> calculate FAloss with 19 channel SISR last_conv feature. still disaster.
    • 19 channel SSSR last_conv(see the code and you'll know what it is) feature -> feature transform module -> calculate FAloss with 19 channel SISR last_conv feature, but no more normalization in the FA module. Seems not bad, but still cannot surpass simple original Deeplab v3+
    • Besides, this project use a square input(default 512*512) which is cropped from the original image.
  • so my results? mIoU about 0.6669 when use the original Deeplab v3+. 0.6638 when i add the SISR path but no FA module. and about 0.62 after i added the FA module.

The result doesn't look good, but this may because of the differences of the FA module.(but why the mIoU decreased after i added the SISR path)

Currently the code doesn't use normalization in FA module. If you want to try using them, please cancel the comment of line 16,18,23,25 in 'utils/fa_loss.py'

Please imform me if you have any questions about the code.

below are discriptions about Deeplab v3+(from the original repo).


pytorch-deeplab-xception

Update on 2018/12/06. Provide model trained on VOC and SBD datasets.

Update on 2018/11/24. Release newest version code, which fix some previous issues and also add support for new backbones and multi-gpu training. For previous code, please see in previous branch

TODO

  • Support different backbones
  • Support VOC, SBD, Cityscapes and COCO datasets
  • Multi-GPU training
Backbone train/eval os mIoU in val Pretrained Model
ResNet 16/16 78.43% google drive
MobileNet 16/16 70.81% google drive
DRN 16/16 78.87% google drive

Introduction

This is a PyTorch(0.4.1) implementation of DeepLab-V3-Plus. It can use Modified Aligned Xception and ResNet as backbone. Currently, we train DeepLab V3 Plus using Pascal VOC 2012, SBD and Cityscapes datasets.

Results

Installation

The code was tested with Anaconda and Python 3.6. After installing the Anaconda environment:

  1. Clone the repo:

    git clone https://github.com/jfzhang95/pytorch-deeplab-xception.git
    cd pytorch-deeplab-xception
  2. Install dependencies:

    For PyTorch dependency, see pytorch.org for more details.

    For custom dependencies:

    pip install matplotlib pillow tensorboardX tqdm

Training

Follow steps below to train your model:

  1. Configure your dataset path in mypath.py.

  2. Input arguments: (see full input arguments via python train.py --help):

    usage: train.py [-h] [--backbone {resnet,xception,drn,mobilenet}]
                [--out-stride OUT_STRIDE] [--dataset {pascal,coco,cityscapes}]
                [--use-sbd] [--workers N] [--base-size BASE_SIZE]
                [--crop-size CROP_SIZE] [--sync-bn SYNC_BN]
                [--freeze-bn FREEZE_BN] [--loss-type {ce,focal}] [--epochs N]
                [--start_epoch N] [--batch-size N] [--test-batch-size N]
                [--use-balanced-weights] [--lr LR]
                [--lr-scheduler {poly,step,cos}] [--momentum M]
                [--weight-decay M] [--nesterov] [--no-cuda]
                [--gpu-ids GPU_IDS] [--seed S] [--resume RESUME]
                [--checkname CHECKNAME] [--ft] [--eval-interval EVAL_INTERVAL]
                [--no-val]
    
  3. To train deeplabv3+ using Pascal VOC dataset and ResNet as backbone:

    bash train_voc.sh
  4. To train deeplabv3+ using COCO dataset and ResNet as backbone:

    bash train_coco.sh

Acknowledgement

PyTorch-Encoding

Synchronized-BatchNorm-PyTorch

drn

Owner
Sam
Get yourself a cup of tea. ˊ_>ˋ旦
Sam
Python package for covariance matrices manipulation and Biosignal classification with application in Brain Computer interface

pyRiemann pyRiemann is a python package for covariance matrices manipulation and classification through Riemannian geometry. The primary target is cla

447 Jan 05, 2023
Pytorch implementation of paper Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data

Pytorch implementation of paper Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data

Hrishikesh Kamath 31 Nov 20, 2022
NVIDIA container runtime

nvidia-container-runtime A modified version of runc adding a custom pre-start hook to all containers. If environment variable NVIDIA_VISIBLE_DEVICES i

NVIDIA Corporation 938 Jan 06, 2023
Continual Learning of Electronic Health Records (EHR).

Continual Learning of Longitudinal Health Records Repo for reproducing the experiments in Continual Learning of Longitudinal Health Records (2021). Re

Jacob 7 Oct 21, 2022
[ICCV2021] IICNet: A Generic Framework for Reversible Image Conversion

IICNet - Invertible Image Conversion Net Official PyTorch Implementation for IICNet: A Generic Framework for Reversible Image Conversion (ICCV2021). D

felixcheng97 55 Dec 06, 2022
A Real-Time-Strategy game for Deep Learning research

Description DeepRTS is a high-performance Real-TIme strategy game for Reinforcement Learning research. It is written in C++ for performance, but provi

Centre for Artificial Intelligence Research (CAIR) 156 Dec 19, 2022
Single-stage Keypoint-based Category-level Object Pose Estimation from an RGB Image

CenterPose Overview This repository is the official implementation of the paper "Single-stage Keypoint-based Category-level Object Pose Estimation fro

NVIDIA Research Projects 188 Dec 27, 2022
A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning

Officile code repository for "A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning"

Mathieu Godbout 1 Nov 19, 2021
1st place solution to the Satellite Image Change Detection Challenge hosted by SenseTime

1st place solution to the Satellite Image Change Detection Challenge hosted by SenseTime

Lihe Yang 209 Jan 01, 2023
PyBrain - Another Python Machine Learning Library.

PyBrain -- the Python Machine Learning Library =============================================== INSTALLATION ------------ Quick answer: make sure you

2.8k Dec 31, 2022
Place holder for HOPE: a human-centric and task-oriented MT evaluation framework using professional post-editing

HOPE: A Task-Oriented and Human-Centric Evaluation Framework Using Professional Post-Editing Towards More Effective MT Evaluation Place holder for dat

Lifeng Han 1 Apr 25, 2022
Adversarial Self-Defense for Cycle-Consistent GANs

Adversarial Self-Defense for Cycle-Consistent GANs This is the official implementation of the CycleGAN robust to self-adversarial attacks used in pape

Dina Bashkirova 10 Oct 10, 2022
System Combination for Grammatical Error Correction Based on Integer Programming

System Combination for Grammatical Error Correction Based on Integer Programming This repository contains the code and scripts that implement the syst

NUS NLP Group 0 Mar 29, 2022
Paddle pit - Rethinking Spatial Dimensions of Vision Transformers

基于Paddle实现PiT ——Rethinking Spatial Dimensions of Vision Transformers,arxiv 官方原版代

Hongtao Wen 4 Jan 15, 2022
On-device wake word detection powered by deep learning.

Porcupine Made in Vancouver, Canada by Picovoice Porcupine is a highly-accurate and lightweight wake word engine. It enables building always-listening

Picovoice 2.8k Dec 29, 2022
Zsseg.baseline - Zero-Shot Semantic Segmentation

This repo is for our paper A Simple Baseline for Zero-shot Semantic Segmentation

98 Dec 20, 2022
StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators

StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators [Project Website] [Replicate.ai Project] StyleGAN-NADA: CLIP-Guided Domain Adaptation

992 Dec 30, 2022
Official implementation of the MM'21 paper Constrained Graphic Layout Generation via Latent Optimization

[MM'21] Constrained Graphic Layout Generation via Latent Optimization This repository provides the official code for the paper "Constrained Graphic La

Kotaro Kikuchi 73 Dec 27, 2022
FaceAnon - Anonymize people in images and videos using yolov5-crowdhuman

Face Anonymizer Blur faces from image and video files in /input/ folder. Require

22 Nov 03, 2022
HCQ: Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval

HCQ: Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval [toc] 1. Introduction This repository provides the code for our paper at

13 Dec 08, 2022