Retrieval.pytorch - The code we used in [2020 DIGIX]

Overview

retrieval.pytorch

dependence

  • python3
  • pytorch
  • numpy
  • scikit-learn
  • tqdm
  • yacs

You can install yacs by pip. Other dependencies can be installed by 'conda'.

prepare dataset

first, you need to download the dataset from here. Then, you can move them into the directory $DATASET and decompress them by

unzip train_data.zip
unzip test_data_A.zip
unzip test_data_B.zip

Then remove the empty directory in train_data:

cd train_data
rm -rf DIGIX_001453
rm -rf DIGIX_001639
rm -rf DIGIX_002284

Finally, you need to edit the file src/dataset/datasets.py and set the correct values for traindir, test_A_dir, test_B_dir.

traindir = '$DATASET/train_data'
test_A_dir = '$DATASET/test_data_A'
test_B_dir = '$DATASET/test_data_B'

Train the network to extract feature

You can train dla102x and resnet101 by the below comands.

python experiments/DIGIX/dla102x/cgd_margin_loss.py
python experiments/DIGIX/resnet101/cgd_margin_loss.py

To train fishnet99, hrnet_w18 and hrnet_w30, you need to download their imagenet pretrained weights from here. Specifically, download fishnet99_ckpt.tar for fishnet99, download hrnetv2_w18_imagenet_pretrained.pth for hrnet_w18, download hrnetv2_w30_imagenet_pretrained.pth for hrnet_w30. Then you need to move these weights to ~/.cache/torch/hub/checkpoints to make sure torch.hub.load_state_dict_from_url can find them.

Then, you can train fishnet99, hrnet_w18, hrnet_w30 by

python experiments/DIGIX/fishnet99/cgd_margin_loss.py
python experiments/DIGIX/hrnet_w18/cgd_margin_loss.py
python experiments/DIGIX/hrnet_w30/cgd_margin_loss.py

After Training, the model weights can be found in results/DIGIX/{model}/cgd_margin_loss/{time}/transient/checkpoint.final.ckpt. We also provide these weights file.

extract features for retrieval

You can download the pretrained model from here and move them to pretrained directory.

Then, run the below comands.

python experiments/DIGIX_test_B/dla102x/cgd_margin_loss_test_B.py
python experiments/DIGIX_test_B/resnet101/cgd_margin_loss_test_B.py
python experiments/DIGIX_test_B/fishnet99/cgd_margin_loss_test_B.py
python experiments/DIGIX_test_B/hrnet_w18/cgd_margin_loss_test_B.py
python experiments/DIGIX_test_B/hrnet_w30/cgd_margin_loss_test_B.py

When finished, the query feature for test_data_B can be found in results/DIGIX_test_B/{model}/cgd_margin_loss_test_B/{time}/query_feat. And the gallery feature can be found in results/DIGIX_test_B/{model}/cgd_margin_loss_test_B/{time}/gallery_feat.

Post process

You can download features from here. Then, you can put it into the directory features and decompress the files by

tar -xvf DIGIX_test_B_dla102x_5088.tar
tar -xvf DIGIX_test_B_fishnet99_5153.tar
tar -xvf DIGIX_test_B_hrnet_w18_5253.tar
tar -xvf DIGIX_test_B_hrnet_w30_5308.tar
tar -xvf DIGIX_test_B_resnet101_5059.tar

Then the features directory will be organized like this:

|-- DIGIX_test_B_dla102x_5088.tar  
|-- DIGIX_test_B_fishnet99_5153.tar  
|-- DIGIX_test_B_hrnet_w18_5253.tar  
|-- DIGIX_test_B_hrnet_w30_5308.tar  
|-- DIGIX_test_B_resnet101_5059.tar 
|-- DIGIX_test_B_dla102x_5088  
| |-- gallery_feat  
| |-- query_feat  
|-- DIGIX_test_B_fishnet99_5153  
| |-- gallery_feat  
| |-- query_feat  
|-- DIGIX_test_B_hrnet_w18_5253  
| |-- gallery_feat  
| |-- query_feat  
|-- DIGIX_test_B_hrnet_w30_5308  
| |-- gallery_feat  
| |-- query_feat  
|-- DIGIX_test_B_resnet101_5059  
| |-- gallery_feat  
| |-- query_feat  

Now, post process can be executed by

python post_process/rank.py --gpu 0 features/DIGIX_test_B_fishnet99_5153 features/DIGIX_test_B_dla102x_5088 features/DIGIX_test_B_hrnet_w18_5253 features/DIGIX_test_B_hrnet_w30_5308 features/DIGIX_test_B_resnet101_5059
Owner
Guo-Hua Wang
Guo-Hua Wang
An self sufficient AI that crawls the web to learn how to generate art from keywords

Roxx-IO - The Smart Artist AI! TO DO / IDEAS Implement Web-Scraping Functionality Figure out a less annoying (and an off button for it) text to speech

Tatz 5 Mar 21, 2022
Covid-19 Test AI (Deep Learning - NNs) Software. Accuracy is the %96.5, loss is the 0.09 :)

Covid-19 Test AI (Deep Learning - NNs) Software I developed a segmentation algorithm to understand whether Covid-19 Test Photos are positive or negati

Emirhan BULUT 28 Dec 04, 2021
Code for the paper Task Agnostic Morphology Evolution.

Task-Agnostic Morphology Optimization This repository contains code for the paper Task-Agnostic Morphology Evolution by Donald (Joey) Hejna, Pieter Ab

Joey Hejna 18 Aug 04, 2022
Python based Advanced AI Assistant

Knick is a virtual artificial intelligence project, fully developed in python. The objective of this project is to develop a virtual assistant that can handle our minor, intermediate as well as heavy

19 Nov 15, 2022
Fast Soft Color Segmentation

Fast Soft Color Segmentation

3 Oct 29, 2022
Demonstration of transfer of knowledge and generalization with distillation

Distilling-the-Knowledge-in-a-Neural-Network This is an implementation of a part of the paper "Distilling the Knowledge in a Neural Network" (https://

26 Nov 25, 2022
Official implementation of NeurIPS'2021 paper TransformerFusion

TransformerFusion: Monocular RGB Scene Reconstruction using Transformers Project Page | Paper | Video TransformerFusion: Monocular RGB Scene Reconstru

Aljaz Bozic 118 Dec 25, 2022
Deep Learning (with PyTorch)

Deep Learning (with PyTorch) This notebook repository now has a companion website, where all the course material can be found in video and textual for

Alfredo Canziani 6.2k Jan 07, 2023
Self-Adaptable Point Processes with Nonparametric Time Decays

NPPDecay This is our implementation for the paper Self-Adaptable Point Processes with Nonparametric Time Decays, by Zhimeng Pan, Zheng Wang, Jeff M. P

zpan 2 Sep 24, 2022
FrankMocap: A Strong and Easy-to-use Single View 3D Hand+Body Pose Estimator

FrankMocap pursues an easy-to-use single view 3D motion capture system developed by Facebook AI Research (FAIR). FrankMocap provides state-of-the-art 3D pose estimation outputs for body, hand, and bo

Facebook Research 1.9k Jan 07, 2023
ML-PersonalWork - Big assignment PersonalWork in Machine Learning, 2021 autumn BUAA.

ML-PersonalWork - Big assignment PersonalWork in Machine Learning, 2021 autumn BUAA.

Snapdragon Lee 2 Dec 16, 2022
Train an RL agent to execute natural language instructions in a 3D Environment (PyTorch)

Gated-Attention Architectures for Task-Oriented Language Grounding This is a PyTorch implementation of the AAAI-18 paper: Gated-Attention Architecture

Devendra Chaplot 234 Nov 05, 2022
[CVPR 2021] NormalFusion: Real-Time Acquisition of Surface Normals for High-Resolution RGB-D Scanning

NormalFusion: Real-Time Acquisition of Surface Normals for High-Resolution RGB-D Scanning Project Page | Paper | Supplemental material #1 | Supplement

KAIST VCLAB 49 Nov 24, 2022
GRF: Learning a General Radiance Field for 3D Representation and Rendering

GRF: Learning a General Radiance Field for 3D Representation and Rendering [Paper] [Video] GRF: Learning a General Radiance Field for 3D Representatio

Alex Trevithick 243 Dec 29, 2022
Code and data for ImageCoDe, a contextual vison-and-language benchmark

ImageCoDe This repository contains code and data for ImageCoDe: Image Retrieval from Contextual Descriptions. Data All collected descriptions for the

McGill NLP 27 Dec 02, 2022
Code for the paper "Attention Approximates Sparse Distributed Memory"

Attention Approximates Sparse Distributed Memory - Codebase This is all of the code used to run analyses in the paper "Attention Approximates Sparse D

Trenton Bricken 14 Dec 05, 2022
Classifying cat and dog images using Kaggle dataset

PyTorch Image Classification Classifies an image as containing either a dog or a cat (using Kaggle's public dataset), but could easily be extended to

Robert Coleman 74 Nov 22, 2022
Codes for our paper "SentiLARE: Sentiment-Aware Language Representation Learning with Linguistic Knowledge" (EMNLP 2020)

SentiLARE: Sentiment-Aware Language Representation Learning with Linguistic Knowledge Introduction SentiLARE is a sentiment-aware pre-trained language

74 Dec 30, 2022
A no-BS, dead-simple training visualizer for tf-keras

A no-BS, dead-simple training visualizer for tf-keras TrainingDashboard Plot inter-epoch and intra-epoch loss and metrics within a jupyter notebook wi

Vibhu Agrawal 3 May 28, 2021
Paddle-Adversarial-Toolbox (PAT) is a Python library for Deep Learning Security based on PaddlePaddle.

Paddle-Adversarial-Toolbox Paddle-Adversarial-Toolbox (PAT) is a Python library for Deep Learning Security based on PaddlePaddle. Model Zoo Common FGS

AgentMaker 17 Nov 08, 2022