RepVGG: Making VGG-style ConvNets Great Again

Related tags

Deep LearningRepVGG
Overview

RepVGG: Making VGG-style ConvNets Great Again (PyTorch)

This is a super simple ConvNet architecture that achieves over 80% top-1 accuracy on ImageNet with a stack of 3x3 conv and ReLU! This repo contains the pretrained models, code for building the model, training, and the conversion from training-time model to inference-time.

The MegEngine version: https://github.com/megvii-model/RepVGG.

TensorRT implemention with C++ API by @upczww https://github.com/upczww/TensorRT-RepVGG. Great work!

Another nice PyTorch implementation by @zjykzj https://github.com/ZJCV/ZCls.

Update (Jan 13, 2021): you can get the equivalent kernel and bias in a differentiable way at any time (get_equivalent_kernel_bias in repvgg.py). This may help training-based pruning or quantization.

Update (Jan 31, 2021): this training script (a super simple PyTorch-official-example-style script) has been tested with RepVGG-A0 and B1. The results are even slightly better than those reported in the paper.

Update (Feb 5, 2021): added a function (whole_model_convert in repvgg.py) for easily converting a customized model with RepVGG as one of its components (e.g., the backbone of a semantic segmentation model). It will convert the RepVGG blocks only and keep the other parts. If it does not work with your model, please raise an issue.

Citation:

@article{ding2101repvgg,
  title={RepVGG: Making VGG-style ConvNets Great Again},
  author={Ding, Xiaohan and Zhang, Xiangyu and Ma, Ningning and Han, Jungong and Ding, Guiguang and Sun, Jian},
  journal={arXiv preprint arXiv:2101.03697}
}

Abstract

We present a simple but powerful architecture of convolutional neural network, which has a VGG-like inference-time body composed of nothing but a stack of 3x3 convolution and ReLU, while the training-time model has a multi-branch topology. Such decoupling of the training-time and inference-time architecture is realized by a structural re-parameterization technique so that the model is named RepVGG. On ImageNet, RepVGG reaches over 80% top-1 accuracy, which is the first time for a plain model, to the best of our knowledge. On NVIDIA 1080Ti GPU, RepVGG models run 83% faster than ResNet-50 or 101% faster than ResNet-101 with higher accuracy and show favorable accuracy-speed trade-off compared to the state-of-the-art models like EfficientNet and RegNet.

image image image

Use our pretrained models

You may download all of the ImageNet-pretrained models reported in the paper from Google Drive (https://drive.google.com/drive/folders/1Avome4KvNp0Lqh2QwhXO6L5URQjzCjUq?usp=sharing) or Baidu Cloud (https://pan.baidu.com/s/1nCsZlMynnJwbUBKn0ch7dQ, the access code is "rvgg"). For the ease of transfer learning on other tasks, they are all training-time models (with identity and 1x1 branches). You may test the accuracy by running

python test.py [imagenet-folder with train and val folders] train [path to weights file] -a [model name]

Here "train" indicates the training-time architecture. For example,

python test.py [imagenet-folder with train and val folders] train RepVGG-B2-train.pth -a RepVGG-B2

Convert the training-time models into inference-time

You may convert a trained model into the inference-time structure with

python convert.py [weights file of the training-time model to load] [path to save] -a [model name]

For example,

python convert.py RepVGG-B2-train.pth RepVGG-B2-deploy.pth -a RepVGG-B2

Then you may test the inference-time model by

python test.py [imagenet-folder with train and val folders] deploy RepVGG-B2-deploy.pth -a RepVGG-B2

Note that the argument "deploy" builds an inference-time model.

ImageNet training

We trained for 120 epochs with cosine learning rate decay from 0.1 to 0. We used 8 GPUs, global batch size of 256, weight decay of 1e-4 (no weight decay on fc.bias, bn.bias, rbr_dense.bn.weight and rbr_1x1.bn.weight) (weight decay on rbr_identity.weight makes little difference, and it is better to use it in most of the cases), and the same simple data preprocssing as the PyTorch official example:

            trans = transforms.Compose([
                transforms.RandomResizedCrop(224),
                transforms.RandomHorizontalFlip(),
                transforms.ToTensor(),
                transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])

The multi-processing training script in this repo is based on the official PyTorch example for the simplicity and better readability. The only modifications include the model-building part, cosine learning rate scheduler, and the SGD optimizer that uses no weight decay on some parameters. You may find these code segments useful for your training code. We tested this training script with RepVGG-A0 and RepVGG-B1. The accuracy was 72.44 and 78.38, respectively, which was almost the same as (and even better than) the results we reported in the paper (72.41 and 78.37). You may train and test like this:

python train.py -a RepVGG-A0 --dist-url 'tcp://127.0.0.1:23333' --dist-backend 'nccl' --multiprocessing-distributed --world-size 1 --rank 0 --workers 32 [imagenet-folder with train and val folders]
python test.py [imagenet-folder with train and val folders] train model_best.pth.tar -a RepVGG-A0

I would really appreciate it if you share with me your re-implementation results with other models.

Use like this in your own code

from repvgg import repvgg_model_convert, create_RepVGG_A0
train_model = create_RepVGG_A0(deploy=False)
train_model.load_state_dict(torch.load('RepVGG-A0-train.pth'))          # or train from scratch
# do whatever you want with train_model
deploy_model = repvgg_model_convert(train_model, create_RepVGG_A0, save_path='repvgg_deploy.pth')
# do whatever you want with deploy_model

or

deploy_model = create_RepVGG_A0(deploy=True)
deploy_model.load_state_dict(torch.load('RepVGG-A0-deploy.pth'))
# do whatever you want with deploy_model

If you use RepVGG as a component of another model, it will be more convenient to use whole_model_convert in repvgg.py for the conversion. Please refer to FAQs for more details.

FAQs

Q: Is the inference-time model's output the same as the training-time model?

A: Yes. You can verify that by

import torch
train_model = create_RepVGG_A0(deploy=False)
train_model.eval()      # Don't forget to call this before inference.
deploy_model = repvgg_model_convert(train_model, create_RepVGG_A0)
x = torch.randn(1, 3, 224, 224)
train_y = train_model(x)
deploy_y = deploy_model(x)
print(((train_y - deploy_y) ** 2).sum())    # Will be around 1e-10

Q: How to use the pretrained RepVGG models for other tasks?

A: It is better to finetune the training-time RepVGG models on your datasets. Then you should do the conversion after finetuning and before you deploy the models. For example, say you want to use PSPNet for semantic segmentation, you should build a PSPNet with a training-time RepVGG model as the backbone, load pre-trained weights into the backbone, and finetune the PSPNet on your segmentation dataset. Then you should convert the backbone following the code provided in this repo and keep the other task-specific structures (the PSPNet parts, in this case). Now we provide a function (whole_model_convert in repvgg.py) to do this. The pseudo code will be like

train_backbone = create_RepVGG_B2(deploy=False)
train_backbone.load_state_dict(torch.load('RepVGG-B2-train.pth'))
train_pspnet = build_pspnet(backbone=train_backbone)
segmentation_train(train_pspnet)
deploy_backbone = create_RepVGG_B2(deploy=True)
deploy_pspnet = build_pspnet(backbone=deploy_backbone)
whole_model_convert(train_pspnet, deploy_pspnet)
segmentation_test(deploy_pspnet)
torch.save(deploy_pspnet.state_dict(), 'deploy_pspnet.pth')

Finetuning with a converted RepVGG also makes sense if you insert a BN after each conv (the converted conv.bias params can be discarded), but the performance may be slightly lower.

Q: How to quantize a RepVGG model?

A1: Post-training quantization. After training and conversion, you may quantize the converted model with any post-training quantization method. Then you may insert a BN after each conv and finetune to recover the accuracy just like you quantize and finetune the other models. This is the recommended solution.

A2: Quantization-aware training. During the quantization-aware training, instead of constraining the params in a single kernel (e.g., making every param in {-127, -126, .., 126, 127} for int8) for ordinary models, you should constrain the equivalent kernel (get_equivalent_kernel_bias() in repvgg.py).

Q: I tried to finetune your model with multiple GPUs but got an error. Why are the names of params like "stage1.0.rbr_dense.conv.weight" in the downloaded weight file but sometimes like "module.stage1.0.rbr_dense.conv.weight" (shown by nn.Module.named_parameters()) in my model?

A: DistributedDataParallel may prefix "module." to the name of params and cause a mismatch when loading weights by name. The simplest solution is to load the weights (model.load_state_dict(...)) before DistributedDataParallel(model). Otherwise, you may insert "module." before the names like this

checkpoint = torch.load(...)    # This is just a name-value dict
ckpt = {('module.' + k) : v for k, v in checkpoint.items()}
model.load_state_dict(ckpt)

Likewise, if the param names in the checkpoint file start with "module." but those in your model do not, you may strip the names like line 50 in test.py.

ckpt = {k.replace('module.', ''):v for k,v in checkpoint.items()}   # strip the names
model.load_state_dict(ckpt)

Q: So a RepVGG model derives the equivalent 3x3 kernels before each forwarding to save computations?

A: No! More precisely, we do the conversion only once right after training. Then the training-time model can be discarded, and the resultant model only has 3x3 kernels. We only save and use the resultant model.

Contact

[email protected]

Google Scholar Profile: https://scholar.google.com/citations?user=CIjw0KoAAAAJ&hl=en

My open-sourced papers and repos:

Simple and powerful VGG-style ConvNet architecture (preprint, 2021): RepVGG: Making VGG-style ConvNets Great Again (https://github.com/DingXiaoH/RepVGG)

State-of-the-art channel pruning (preprint, 2020): Lossless CNN Channel Pruning via Decoupling Remembering and Forgetting (https://github.com/DingXiaoH/ResRep)

CNN component (ICCV 2019): ACNet: Strengthening the Kernel Skeletons for Powerful CNN via Asymmetric Convolution Blocks (https://github.com/DingXiaoH/ACNet)

Channel pruning (CVPR 2019): Centripetal SGD for Pruning Very Deep Convolutional Networks with Complicated Structure (https://github.com/DingXiaoH/Centripetal-SGD)

Channel pruning (ICML 2019): Approximated Oracle Filter Pruning for Destructive CNN Width Optimization (https://github.com/DingXiaoH/AOFP)

Unstructured pruning (NeurIPS 2019): Global Sparse Momentum SGD for Pruning Very Deep Neural Networks (https://github.com/DingXiaoH/GSM-SGD)

Code and data of the ACL 2021 paper: Few-Shot Text Ranking with Meta Adapted Synthetic Weak Supervision

MetaAdaptRank This repository provides the implementation of meta-learning to reweight synthetic weak supervision data described in the paper Few-Shot

THUNLP 5 Jun 16, 2022
This program uses trial auth token of Azure Cognitive Services to do speech synthesis for you.

🗣️ aspeak A simple text-to-speech client using azure TTS API(trial). 😆 TL;DR: This program uses trial auth token of Azure Cognitive Services to do s

Levi Zim 359 Jan 05, 2023
Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras (ICCV 2021)

N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Gra

32 Dec 26, 2022
Official Implementation of 'UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers' ICLR 2021(spotlight)

UPDeT Official Implementation of UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers (ICLR 2021 spotlight) The

hhhusiyi 96 Dec 22, 2022
FluxTraining.jl gives you an endlessly extensible training loop for deep learning

A flexible neural net training library inspired by fast.ai

86 Dec 31, 2022
PyTorch implementations of the beta divergence loss.

Beta Divergence Loss - PyTorch Implementation This repository contains code for a PyTorch implementation of the beta divergence loss. Dependencies Thi

Billy Carson 7 Nov 09, 2022
(JMLR'19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)

Python Outlier Detection (PyOD) Deployment & Documentation & Stats Build Status & Coverage & Maintainability & License PyOD is a comprehensive and sca

Yue Zhao 6.6k Jan 03, 2023
Code to reproduce the experiments from our NeurIPS 2021 paper " The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective"

Code To run: python runner.py new --save SAVE_NAME --data PATH_TO_DATA_DIR --dataset DATASET --model model_name [options] --n 1000 - train - t

Geoff Pleiss 5 Dec 12, 2022
Code repository for our paper "Learning to Generate Scene Graph from Natural Language Supervision" in ICCV 2021

Scene Graph Generation from Natural Language Supervision This repository includes the Pytorch code for our paper "Learning to Generate Scene Graph fro

Yiwu Zhong 64 Dec 24, 2022
Hierarchical Memory Matching Network for Video Object Segmentation (ICCV 2021)

Hierarchical Memory Matching Network for Video Object Segmentation Hongje Seong, Seoung Wug Oh, Joon-Young Lee, Seongwon Lee, Suhyeon Lee, Euntai Kim

Hongje Seong 72 Dec 14, 2022
Official PyTorch implementation of the paper "Graph-based Generative Face Anonymisation with Pose Preservation" in ICIAP 2021

Contents AnonyGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evaluation Acknowledgments Citat

Nicola Dall'Asen 10 May 24, 2022
A simple software for capturing human body movements using the Kinect camera.

KinectMotionCapture A simple software for capturing human body movements using the Kinect camera. The software can seamlessly save joints and bones po

Aleksander Palkowski 5 Aug 13, 2022
Web-interface + rest API for classification and regression (https://jeff1evesque.github.io/machine-learning.docs)

Machine Learning This project provides a web-interface, as well as a programmatic-api for various machine learning algorithms. Supported algorithms: S

Jeff Levesque 252 Dec 11, 2022
Creating predictive checklists from data using integer programming.

Learning Optimal Predictive Checklists A Python package to learn simple predictive checklists from data subject to customizable constraints. For more

Healthy ML 5 Apr 19, 2022
Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks"

LUNAR Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks" Adam Goodge, Bryan Hooi, Ng See Kiong and

Adam Goodge 25 Dec 28, 2022
Pytorch Implementation of "Desigining Network Design Spaces", Radosavovic et al. CVPR 2020.

RegNet Pytorch Implementation of "Desigining Network Design Spaces", Radosavovic et al. CVPR 2020. Paper | Official Implementation RegNet offer a very

Vishal R 2 Feb 11, 2022
Plato: A New Framework for Federated Learning Research

a new software framework to facilitate scalable federated learning research.

System <a href=[email protected] Lab"> 192 Jan 05, 2023
3DIAS: 3D Shape Reconstruction with Implicit Algebraic Surfaces (ICCV 2021)

3DIAS_Pytorch This repository contains the official code to reproduce the results from the paper: 3DIAS: 3D Shape Reconstruction with Implicit Algebra

Mohsen Yavartanoo 21 Dec 12, 2022
Code and data of the Fine-Grained R2R Dataset proposed in paper Sub-Instruction Aware Vision-and-Language Navigation

Fine-Grained R2R Code and data of the Fine-Grained R2R Dataset proposed in the EMNLP2020 paper Sub-Instruction Aware Vision-and-Language Navigation. C

YicongHong 34 Nov 15, 2022
Source code for the ACL-IJCNLP 2021 paper entitled "T-DNA: Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adaptation" by Shizhe Diao et al.

T-DNA Source code for the ACL-IJCNLP 2021 paper entitled Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adapta

shizhediao 17 Dec 22, 2022