A Multi-modal Model Chinese Spell Checker Released on ACL2021.

Related tags

Deep LearningReaLiSe
Overview

ReaLiSe

ReaLiSe is a multi-modal Chinese spell checking model.

This the office code for the paper Read, Listen, and See: Leveraging Multimodal Information Helps Chinese Spell Checking.

The paper has been accepted in ACL Findings 2021.

Environment

  • Python: 3.6
  • Cuda: 10.0
  • Packages: pip install -r requirements.txt

Data

Raw Data

SIGHAN Bake-off 2013: http://ir.itc.ntnu.edu.tw/lre/sighan7csc.html
SIGHAN Bake-off 2014: http://ir.itc.ntnu.edu.tw/lre/clp14csc.html
SIGHAN Bake-off 2015: http://ir.itc.ntnu.edu.tw/lre/sighan8csc.html
Wang271K: https://github.com/wdimmy/Automatic-Corpus-Generation

Data Processing

The code and cleaned data are in the data_process directory.

You can also directly download the processed data from this and put them in the data directory. The data directory would look like this:

data
|- trainall.times2.pkl
|- test.sighan15.pkl
|- test.sighan15.lbl.tsv
|- test.sighan14.pkl
|- test.sighan14.lbl.tsv
|- test.sighan13.pkl
|- test.sighan13.lbl.tsv

Pretrain

  • BERT: chinese-roberta-wwm-ext

    Huggingface hfl/chinese-roberta-wwm-ext: https://huggingface.co/hfl/chinese-roberta-wwm-ext
    Local: /data/dobby_ceph_ir/neutrali/pretrained_models/roberta-base-ch-for-csc/

  • Phonetic Encoder: pretrain_pho.sh

  • Graphic Encoder: pretrain_res.sh

  • Merge: merge.py

You can also directly download the pretrained and merged BERT, Phonetic Encoder, and Graphic Encoder from this, and put them in the pretrained directory:

pretrained
|- pytorch_model.bin
|- vocab.txt
|- config.json

Train

After preparing the data and pretrained model, you can train ReaLiSe by executing the train.sh script. Note that you should set up the PRETRAINED_DIR, DATE_DIR, and OUTPUT_DIR in it.

sh train.sh

Test

Test ReaLiSe using the test.sh script. You should set up the DATE_DIR, CKPT_DIR, and OUTPUT_DIR in it. CKPT_DIR is the OUTPUT_DIR of the training process.

sh test.sh

Well-trained Model

You can also download well-trained model from this direct using. The performance scores of RealiSe and some baseline models on the SIGHAN13, SIGHAN14, SIGHAN15 test set are here:

Methods

Metrics

  • "D" means "Detection Level", "C" means "Correction Level".
  • "A", "P", "R", "F" means "Accuracy", "Precision", "Recall", and "F1" respectively.

SIGHAN15

Method D-A D-P D-R D-F C-A C-P C-R C-F
FASpell 74.2 67.6 60.0 63.5 73.7 66.6 59.1 62.6
Soft-Masked BERT 80.9 73.7 73.2 73.5 77.4 66.7 66.2 66.4
SpellGCN - 74.8 80.7 77.7 - 72.1 77.7 75.9
BERT 82.4 74.2 78.0 76.1 81.0 71.6 75.3 73.4
ReaLiSe 84.7 77.3 81.3 79.3 84.0 75.9 79.9 77.8

SIGHAN14

Method D-A D-P D-R D-F C-A C-P C-R C-F
Pointer Network - 63.2 82.5 71.6 - 79.3 68.9 73.7
SpellGCN - 65.1 69.5 67.2 - 63.1 67.2 65.3
BERT 75.7 64.5 68.6 66.5 74.6 62.4 66.3 64.3
ReaLiSe 78.4 67.8 71.5 69.6 77.7 66.3 70.0 68.1

SIGHAN13

Method D-A D-P D-R D-F C-A C-P C-R C-F
FASpell 63.1 76.2 63.2 69.1 60.5 73.1 60.5 66.2
SpellGCN 78.8 85.7 78.8 82.1 77.8 84.6 77.8 81.0
BERT 77.0 85.0 77.0 80.8 77.4 83.0 75.2 78.9
ReaLiSe 82.7 88.6 82.5 85.4 81.4 87.2 81.2 84.1

Citation

@misc{xu2021read,
      title={Read, Listen, and See: Leveraging Multimodal Information Helps Chinese Spell Checking}, 
      author={Heng-Da Xu and Zhongli Li and Qingyu Zhou and Chao Li and Zizhen Wang and Yunbo Cao and Heyan Huang and Xian-Ling Mao},
      year={2021},
      eprint={2105.12306},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
Owner
DaDa
A student majoring in Computer Science in BIT.
DaDa
Source code and notebooks to reproduce experiments and benchmarks on Bias Faces in the Wild (BFW).

Face Recognition: Too Bias, or Not Too Bias? Robinson, Joseph P., Gennady Livitz, Yann Henon, Can Qin, Yun Fu, and Samson Timoner. "Face recognition:

Joseph P. Robinson 41 Dec 12, 2022
[CVPR 2021] Unsupervised Degradation Representation Learning for Blind Super-Resolution

DASR Pytorch implementation of "Unsupervised Degradation Representation Learning for Blind Super-Resolution", CVPR 2021 [arXiv] Overview Requirements

Longguang Wang 318 Dec 24, 2022
【CVPR 2021, Variational Inference Framework, PyTorch】 From Rain Generation to Rain Removal

From Rain Generation to Rain Removal (CVPR2021) Hong Wang, Zongsheng Yue, Qi Xie, Qian Zhao, Yefeng Zheng, and Deyu Meng [PDF&&Supplementary Material]

Hong Wang 48 Nov 23, 2022
VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation

VID-Fusion VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation Authors: Ziming Ding , Tiankai Yang, Kunyi Zhan

ZJU FAST Lab 86 Nov 18, 2022
The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

machen 11 Nov 27, 2022
Code to reproduce the results for Compositional Attention

Compositional-Attention This repository contains the official implementation for the paper Compositional Attention: Disentangling Search and Retrieval

Sarthak Mittal 58 Nov 30, 2022
Benchmarking Pipeline for Prediction of Protein-Protein Interactions

B4PPI Benchmarking Pipeline for the Prediction of Protein-Protein Interactions How this benchmarking pipeline has been built, and how to use it, is de

Loïc Lannelongue 4 Jun 27, 2022
Repository of best practices for deep learning in Julia, inspired by fastai

FastAI Docs: Stable | Dev FastAI.jl is inspired by fastai, and is a repository of best practices for deep learning in Julia. Its goal is to easily ena

FluxML 532 Jan 02, 2023
Revisiting Video Saliency: A Large-scale Benchmark and a New Model (CVPR18, PAMI19)

DHF1K =========================================================================== Wenguan Wang, J. Shen, M.-M Cheng and A. Borji, Revisiting Video Sal

Wenguan Wang 126 Dec 03, 2022
Code for "Typilus: Neural Type Hints" PLDI 2020

Typilus A deep learning algorithm for predicting types in Python. Please find a preprint here. This repository contains its implementation (src/) and

47 Nov 08, 2022
Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition in CVPR19

2s-AGCN Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition in CVPR19 Note PyTorch version should be 0.3! For PyTor

LShi 547 Dec 26, 2022
Lightweight tool to perform MITM attack on local network

ARPSpy - A lightweight tool to perform MITM attack Using many library to perform ARP Spoof and auto-sniffing HTTP packet containing credential. (Never

MinhItachi 8 Aug 28, 2022
PyTorch implementation of CDistNet: Perceiving Multi-Domain Character Distance for Robust Text Recognition

PyTorch implementation of CDistNet: Perceiving Multi-Domain Character Distance for Robust Text Recognition The unofficial code of CDistNet. Now, we ha

25 Jul 20, 2022
I-BERT: Integer-only BERT Quantization

I-BERT: Integer-only BERT Quantization HuggingFace Implementation I-BERT is also available in the master branch of HuggingFace! Visit the following li

Sehoon Kim 139 Dec 27, 2022
Learning infinite-resolution image processing with GAN and RL from unpaired image datasets, using a differentiable photo editing model.

Exposure: A White-Box Photo Post-Processing Framework ACM Transactions on Graphics (presented at SIGGRAPH 2018) Yuanming Hu1,2, Hao He1,2, Chenxi Xu1,

Yuanming Hu 719 Dec 29, 2022
NeROIC: Neural Object Capture and Rendering from Online Image Collections

NeROIC: Neural Object Capture and Rendering from Online Image Collections This repository is for the source code for the paper NeROIC: Neural Object C

Snap Research 647 Dec 27, 2022
Brain Tumor Detection with Tensorflow Neural Networks.

Brain-Tumor-Detection A convolutional neural network model built with Tensorflow & Keras to detect brain tumor and its different variants. Data of the

404ErrorNotFound 5 Aug 23, 2022
An example of time series augmentation methods with Keras

Time Series Augmentation This is a collection of time series data augmentation methods and an example use using Keras. News 2020/04/16: Repository Cre

九州大学 ヒューマンインタフェース研究室 229 Jan 02, 2023
iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis

iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis Andreas Bl

CompVis Heidelberg 36 Dec 25, 2022
Improving Generalization Bounds for VC Classes Using the Hypergeometric Tail Inversion

Improving Generalization Bounds for VC Classes Using the Hypergeometric Tail Inversion Preface This directory provides an implementation of the algori

Jean-Samuel Leboeuf 0 Nov 03, 2021