Notebooks, slides and dataset of the CorrelAid Machine Learning Winter School

Overview

CorrelAid Machine Learning Winter School

Welcome to the CorrelAid ML Winter School!

Task

The problem we want to solve is to classify trees in Roosevelt National Forest.

Setup

Please make sure you have a modern Python 3 installation. We recommend the Python distribution Miniconda that is available for all OS.

The easiest way to get started is with a clean virtual environment. You can do so by running the following commands, assuming that you have installed Miniconda or Anaconda.

$ conda create -n winter-school python=3.9
$ conda activate winter-school
(winter-school) $ pip install -r requirements.txt
(winter-school) $ python -m ipykernel install --user --name winter-school --display-name "Python 3.9 (winter-school)"

The first command will create a new environment with Python 3.9. To use this environment, you call conda activate <name> with the name of the environment as second step. Once activated, you can install packages as usual with the pip package manager. You will install all listed requirements from the provided requirements.txt as a third step. Finally, to actually make your new environment available as kernel within a Jupyter notebook, you need to run ipykernel install, which is the fourth command.

Once the setup is complete, you can run any notebook by calling

(winter-school) $ <jupyter-lab|jupyter notebook>

jupyter lab is opening your browser with a local version of JupyterLab, which is a web-based interactive development environment that is somewhat more powerful and more modern than the older Jupyter Notebook. Both work fine, so you can choose the tool that is more to your liking. We recommend to go with Jupyter Lab as it provides a file browser, among other improvements.

Data

The data to be analyzed is one of the classic data sets from the UCI Machine Learning Repository, the Forest Cover Type Dataset.

The dataset contains tree observations from four areas of the Roosevelt National Forest in Colorado. All observations are cartographic variables (no remote sensing) from 30 meter x 30 meter sections of forest. There are over half a million measurements total!

The dataset includes information on tree type, shadow coverage, distance to nearby landmarks (roads etcetera), soil type, and local topography.

Note: We provide the data set as it can be downloaded from kaggle and not in its original form from the UCI repository.

Attribute Information:

Given is the attribute name, attribute type, the measurement unit and a brief description. The forest cover type is the classification problem. The order of this listing corresponds to the order of numerals along the rows of the database.

Name / Data Type / Measurement / Description

  • Elevation / quantitative /meters / Elevation in meters
  • Aspect / quantitative / azimuth / Aspect in degrees azimuth
  • Slope / quantitative / degrees / Slope in degrees
  • Horizontal_Distance_To_Hydrology / quantitative / meters / Horz Dist to nearest surface water features
  • Vertical_Distance_To_Hydrology / quantitative / meters / Vert Dist to nearest surface water features
  • Horizontal_Distance_To_Roadways / quantitative / meters / Horz Dist to nearest roadway
  • Hillshade_9am / quantitative / 0 to 255 index / Hillshade index at 9am, summer solstice
  • Hillshade_Noon / quantitative / 0 to 255 index / Hillshade index at noon, summer soltice
  • Hillshade_3pm / quantitative / 0 to 255 index / Hillshade index at 3pm, summer solstice
  • Horizontal_Distance_To_Fire_Points / quantitative / meters / Horz Dist to nearest wildfire ignition points
  • Wilderness_Area (4 binary columns) / qualitative / 0 (absence) or 1 (presence) / Wilderness area designation
  • Soil_Type (40 binary columns) / qualitative / 0 (absence) or 1 (presence) / Soil Type designation
  • Cover_Type (7 types) / integer / 1 to 7 / Forest Cover Type designation
Owner
CorrelAid
Soziales Engagement 2.0 - Datenanalyse für den guten Zweck
CorrelAid
Semi-supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks

SSRL-for-image-classification Semi-supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks

Feng 2 Nov 19, 2021
DP-CL(Continual Learning with Differential Privacy)

DP-CL(Continual Learning with Differential Privacy) This is the official implementation of the Continual Learning with Differential Privacy. If you us

Phung Lai 3 Nov 04, 2022
An implementation of chunked, compressed, N-dimensional arrays for Python.

Zarr Latest Release Package Status License Build Status Coverage Downloads Gitter Citation What is it? Zarr is a Python package providing an implement

Zarr Developers 1.1k Dec 30, 2022
Control-Robot-Arm-using-PS4-Controller - A Robotic Arm based on Raspberry Pi and Arduino that controlled by PS4 Controller

Control-Robot-Arm-using-PS4-Controller You can see all details about this Robot

MohammadReza Sharifi 5 Jan 01, 2022
Official Keras Implementation for UNet++ in IEEE Transactions on Medical Imaging and DLMIA 2018

UNet++: A Nested U-Net Architecture for Medical Image Segmentation UNet++ is a new general purpose image segmentation architecture for more accurate i

Zongwei Zhou 1.8k Dec 27, 2022
E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation

E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation E2EC: An End-to-End Contour-based Method for High-Quality H

zhangtao 146 Dec 29, 2022
[ICML 2022] The official implementation of Graph Stochastic Attention (GSAT).

Graph Stochastic Attention (GSAT) The official implementation of GSAT for our paper: Interpretable and Generalizable Graph Learning via Stochastic Att

85 Nov 27, 2022
A Python package for causal inference using Synthetic Controls

Synthetic Control Methods A Python package for causal inference using synthetic controls This Python package implements a class of approaches to estim

Oscar Engelbrektson 107 Dec 28, 2022
Code to reproduce the experiments from our NeurIPS 2021 paper " The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective"

Code To run: python runner.py new --save SAVE_NAME --data PATH_TO_DATA_DIR --dataset DATASET --model model_name [options] --n 1000 - train - t

Geoff Pleiss 5 Dec 12, 2022
Code accompanying the paper "Knowledge Base Completion Meets Transfer Learning"

Knowledge Base Completion Meets Transfer Learning This code accompanies the paper Knowledge Base Completion Meets Transfer Learning published at EMNLP

14 Nov 27, 2022
Self-supervised Product Quantization for Deep Unsupervised Image Retrieval - ICCV2021

Self-supervised Product Quantization for Deep Unsupervised Image Retrieval Pytorch implementation of SPQ Accepted to ICCV 2021 - paper Young Kyun Jang

Young Kyun Jang 71 Dec 27, 2022
Official Pytorch implementation of 'RoI Tanh-polar Transformer Network for Face Parsing in the Wild.'

Official Pytorch implementation of 'RoI Tanh-polar Transformer Network for Face Parsing in the Wild.'

Jie Shen 125 Jan 08, 2023
This repo. is an implementation of ACFFNet, which is accepted for in Image and Vision Computing.

Attention-Guided-Contextual-Feature-Fusion-Network-for-Salient-Object-Detection This repo. is an implementation of ACFFNet, which is accepted for in I

5 Nov 21, 2022
MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Resolution (CVPR2021)

MASA-SR Official PyTorch implementation of our CVPR2021 paper MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Re

DV Lab 126 Dec 20, 2022
DEEPAGÉ: Answering Questions in Portuguese about the Brazilian Environment

DEEPAGÉ: Answering Questions in Portuguese about the Brazilian Environment This repository is related to the paper DEEPAGÉ: Answering Questions in Por

0 Dec 10, 2021
SAN for Product Attributes Prediction

SAN Heterogeneous Star Graph Attention Network for Product Attributes Prediction This repository contains the official PyTorch implementation for ADVI

Xuejiao Zhao 9 Dec 12, 2022
System Design course at HSE (2021)

System Design course at HSE (2021) Wiki-страница курса Структура репозитория: slides - директория с презентациями с занятий tasks - материалы для выпо

22 Dec 25, 2022
🥈78th place in Riiid Answer Correctness Prediction competition

Riiid Answer Correctness Prediction Introduction This repository is the code that placed 78th in Riiid Answer Correctness Prediction competition. Requ

Jungwoo Park 10 Jul 14, 2022
Keep CALM and Improve Visual Feature Attribution

Keep CALM and Improve Visual Feature Attribution Jae Myung Kim1*, Junsuk Choe1*, Zeynep Akata2, Seong Joon Oh1† * Equal contribution † Corresponding a

NAVER AI 90 Dec 07, 2022
Streamlit Tutorial (ex: stock price dashboard, cartoon-stylegan, vqgan-clip, stylemixing, styleclip, sefa)

Streamlit Tutorials Install pip install streamlit Run cd [directory] streamlit run app.py --server.address 0.0.0.0 --server.port [your port] # http:/

Jihye Back 30 Jan 06, 2023