A Partition Filter Network for Joint Entity and Relation Extraction EMNLP 2021

Overview

PFN (Partition Filter Network)

This repository contains codes of the official implementation for the paper A Partition Filter Network for Joint Entity and Relation Extraction EMNLP 2021 [PDF] [PPT]

Quick links

Model Overview

In this work, we present a new framework equipped with a novel recurrent encoder named partition filter encoder designed for multi-task learning. The encoder enforces bilateral interaction between NER and RE in two ways:

  1. The shared partition represents inter-task information and is equally accessible to both tasks, allowing for balanced interaction between NER and RE.
  2. The task partitions represent intra-task information and are formed through concerted efforts of entity and relation gates, making sure that encoding process of entity and relation features are dependent upon each other.

Preparation

Environment Setup

The experiments were performed using one single NVIDIA-RTX3090 GPU. The dependency packages can be installed with the following command:

pip install -r requirements.txt

Also, make sure that the python version is 3.7.10

Data Acquisition and Preprocessing

This is the first work that covers all the mainstream English datasets for evaluation, including [NYT, WEBNLG, ADE, ACE2005, ACE2004, SCIERC, CONLL04]. Please follow the instructions of reademe.md in each dataset folder in ./data/ for data acquisition and preprocessing.

Custom Dataset

If your custom dataset has a large number of triples that contain head-overlap entities (common in Chinese dataset), accuracy of the orignal PFN will not be good.

The orignal one will not be able to decode triples with head-overlap entities. For example, if New York and New York City are both entities, and there exists a RE prediction such as (new, cityof, USA), we cannot know what New corresponds to.

Luckily, the impact on evaluation of English dataset is limited, since such triple is either filtered out (for ADE) or rare (one in test set of SciERC, one in ACE04, zero in other datasets).

You can use our updated PFN-nested to handle the issue. PFN-nested is an enhanced version of PFN. This model is better in leveraging entity tail information and capable of handling nested triple prediction. For usage, replace the files in the root directory with the files in the PFN-nested folder, then follow the directions in Quick Start.

Performance comparison in SciERC

Model NER RE
PFN 66.8 38.4
PFN-nested 67.9 38.7

Quick Start

Model Training

The training command-line is listed below (command for CONLL04 is in Evaluation on CoNLL04):

python main.py \
--data ${NYT/WEBNLG/ADE/ACE2005/ACE2004/SCIERC} \
--do_train \
--do_eval \
--embed_mode ${bert_cased/albert/scibert} \
--batch_size ${20 (for most datasets) /4 (for SCIERC)} \
--lr ${0.00002 (for most datasets) /0.00001 (for SCIERC)} \
--output_file ${the name of your output files, e.g. ace_test} \
--eval_metric ${micro/macro} 

After training, you will obtain three files in the ./save/${output_file}/ directory:

  • ${output_file}.log records the logging information.
  • ${output_file}.txt records loss, NER and RE results of dev set and test set for each epoch.
  • ${output_file}.pt is the saved model with best average F1 results of NER and RE in the dev set.

Evaluation on Pre-trained Model

The evaluation command-line is listed as follows:

python eval.py \
--data ${NYT/WEBNLG/ADE/ACE2005/ACE2004/SCIERC} \
--eval_metric ${micro/macro} \
--model_file ${the path of saved model you want to evaluate. e.g. save/ace_test.pt} \
--embed_mode ${bert_cased/albert/scibert}

Inference on Customized Input

If you want to evaluate the model with customized input, please run the following code:

python inference.py \
--model_file ${the path of your saved model} \
--sent ${sentence you want to evaluate, str type restricted}

{model_file} must contain information about the datasets the model trained on (web/nyt/ade/ace/sci) and the type of pretrained embedding the model uses (albert/bert/scibert). For example, model_file could be set as "web_bert.pt"

Example

input:
python inference.py \
--model_file save/sci_test_scibert.pt \
--sent "In this work , we present a new framework equipped with a novel recurrent encoder   
        named partition filter encoder designed for multi-task learning ."

result:
entity_name: framework, entity type: Generic
entity_name: recurrent encoder, entity type: Method
entity_name: partition filter encoder, entity type: Method
entity_name: multi-task learning, entity type: Task
triple: recurrent encoder, Used-for, framework
triple: recurrent encoder, Part-of, framework
triple: recurrent encoder, Used-for, multi-task learning
triple: partition filter encoder, Hyponym-of, recurrent encoder
triple: partition filter encoder, Used-for, multi-task learning



input:  
python inference.py \
--model_file save/ace_test_albert.pt \
--sent "As Williams was struggling to gain production and an audience for his work in the late 1930s ,  
        he worked at a string of menial jobs that included a stint as caretaker on a chicken ranch in   
        Laguna Beach , California . In 1939 , with the help of his agent Audrey Wood , Williams was 
        awarded a $1,000 grant from the Rockefeller Foundation in recognition of his play Battle of 
        Angels . It was produced in Boston in 1940 and was poorly received ."

result:
entity_name: Williams, entity type: PER
entity_name: audience, entity type: PER
entity_name: his, entity type: PER
entity_name: he, entity type: PER
entity_name: caretaker, entity type: PER
entity_name: ranch, entity type: FAC
entity_name: Laguna Beach, entity type: GPE
entity_name: California, entity type: GPE
entity_name: his, entity type: PER
entity_name: agent, entity type: PER
entity_name: Audrey Wood, entity type: PER
entity_name: Williams, entity type: PER
entity_name: Rockefeller Foundation, entity type: ORG
entity_name: his, entity type: PER
entity_name: Boston, entity type: GPE
triple: caretaker, PHYS, ranch
triple: ranch, PART-WHOLE, Laguna Beach
triple: Laguna Beach, PART-WHOLE, California

Evaluation on CoNLL04

We also run the test on the dataset CoNLL04, but we did not report the results in our paper due to several reasons:

The command for running CoNLL04 is listed below:

python main.py \
--data CONLL04 \
--do_train \
--do_eval \
--embed_mode albert \
--batch_size 10 \
--lr 0.00002 \
--output_file ${the name of your output files} \
--eval_metric micro \
--clip 1.0 \
--epoch 200

Pre-trained Models and Training Logs

We provide you with pre-trained models for NYT/WEBNLG/ACE2005/ACE2004/SCIERC/CONLL04, along with recorded results of each epoch, identical with training results under the specified configurations above.

Download Links

Due to limited space in google drive, 10-fold model files for ADE are not available to you (training record still available).

After downloading the linked files below, unzip them and put ${data}_test.pt in the directory of ./save/ before running eval.py. Also, ${data}_test.txt and ${data}_test.log records the results of each epoch. You should check that out as well.

Dataset File Size Embedding Download
NYT 393MB Bert-base-cased Link
WebNLG 393MB Bert-base-cased Link
ACE05 815MB Albert-xxlarge-v1 Link
ACE04 3.98GB Albert-xxlarge-v1 Link
SciERC 399MB Scibert-uncased Link
ADE 214KB Bert + Albert Link
CoNLL04 815MB Albert-xxlarge-v1 Link

Result Display

F1 results on NYT/WebNLG/ACE05/SciERC:

Dataset Embedding NER RE
NYT Bert-base-cased 95.8 92.4
WebNLG Bert-base-cased 98.0 93.6
ACE05 Albert-xxlarge-v1 89.0 66.8
SciERC Scibert-uncased 66.8 38.4

F1 results on ACE04:

5-fold 0 1 2 3 4 Average
Albert-NER 89.7 89.9 89.5 89.7 87.6 89.3
Albert-RE 65.5 61.4 63.4 61.5 60.7 62.5

F1 results on CoNLL04:

Model Embedding Micro-NER Micro-RE
Table-sequence Albert-xxlarge-v1 90.1 73.6
PFN Albert-xxlarge-v1 89.6 75.0

F1 results on ADE:

10-fold 0 1 2 3 4 5 6 7 8 9 Average
Bert-NER 89.6 92.3 90.3 88.9 88.8 90.2 90.1 88.5 88.0 88.9 89.6
Bert-RE 80.5 85.8 79.9 79.4 79.3 80.5 80.0 78.1 76.2 79.8 80.0
Albert-NER 91.4 92.9 91.9 91.5 90.7 91.6 91.9 89.9 90.6 90.7 91.3
Albert-RE 83.9 86.8 82.8 83.2 82.2 82.4 84.5 82.3 81.9 82.2 83.2

Robustness Against Input Perturbation

We use robustness test to evaluate our model under adverse circumstances. In this case, we use the domain transformation methods of NER from Textflint.

The test files can be found in the folder of ./robustness_data/. Our reported results are evaluated with the linked ACE2005-albert model above. For each test file, move it to ./data/ACE2005/ and rename it as test_triples.json, then run eval.py with the instructions above.

Citation

Please cite our paper if it's helpful to you in your research.

@misc{yan2021partition,
      title={A Partition Filter Network for Joint Entity and Relation Extraction}, 
      author={Zhiheng Yan and Chong Zhang and Jinlan Fu and Qi Zhang and Zhongyu Wei},
      year={2021},
      eprint={2108.12202},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
Owner
zhy
Knowledge Graph, Information Extraction, Interpretability of NLP System
zhy
KIDA: Knowledge Inheritance in Data Aggregation

KIDA: Knowledge Inheritance in Data Aggregation This project releases our 1st place solution on NeurIPS2021 ML4CO Dual Task. Slide and model weights a

24 Sep 08, 2022
LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection

LiDAR Distillation Paper | Model LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection Yi Wei, Zibu Wei, Yongming Rao, Jiax

Yi Wei 75 Dec 22, 2022
Zeyuan Chen, Yangchao Wang, Yang Yang and Dong Liu.

Principled S2R Dehazing This repository contains the official implementation for PSD Framework introduced in the following paper: PSD: Principled Synt

zychen 78 Dec 30, 2022
Pytorch implementation of "Geometrically Adaptive Dictionary Attack on Face Recognition" (WACV 2022)

Geometrically Adaptive Dictionary Attack on Face Recognition This is the Pytorch code of our paper "Geometrically Adaptive Dictionary Attack on Face R

6 Nov 21, 2022
Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020)

Causality In Traffic Accident (Under Construction) Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020) Overview Data Prepa

Tackgeun 21 Nov 20, 2022
Unofficial PyTorch implementation of Guided Dropout

Unofficial PyTorch implementation of Guided Dropout This is a simple implementation of Guided Dropout for research. We try to reproduce the algorithm

2 Jan 07, 2022
YuNetのPythonでのONNX、TensorFlow-Lite推論サンプル

YuNet-ONNX-TFLite-Sample YuNetのPythonでのONNX、TensorFlow-Lite推論サンプルです。 TensorFlow-LiteモデルはPINTO0309/PINTO_model_zoo/144_YuNetのものを使用しています。 Requirement Op

KazuhitoTakahashi 8 Nov 17, 2021
using yolox+deepsort for object-tracker

YOLOX_deepsort_tracker yolox+deepsort实现目标跟踪 最新的yolox尝尝鲜~~(yolox正处在频繁更新阶段,因此直接链接yolox仓库作为子模块) Install Clone the repository recursively: git clone --rec

245 Dec 26, 2022
Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Zhengzhong Tu 5 Sep 16, 2022
MetaShift: A Dataset of Datasets for Evaluating Contextual Distribution Shifts and Training Conflicts (ICLR 2022)

MetaShift: A Dataset of Datasets for Evaluating Distribution Shifts and Training Conflicts This repo provides the PyTorch source code of our paper: Me

88 Jan 04, 2023
PyTorch Implementation for "ForkGAN with SIngle Rainy NIght Images: Leveraging the RumiGAN to See into the Rainy Night"

ForkGAN with Single Rainy Night Images: Leveraging the RumiGAN to See into the Rainy Night By Seri Lee, Department of Engineering, Seoul National Univ

Seri Lee 52 Oct 12, 2022
A Python multilingual toolkit for Sentiment Analysis and Social NLP tasks

pysentimiento: A Python toolkit for Sentiment Analysis and Social NLP tasks A Transformer-based library for SocialNLP classification tasks. Currently

298 Jan 07, 2023
Source code for the paper "PLOME: Pre-training with Misspelled Knowledge for Chinese Spelling Correction" in ACL2021

PLOME:Pre-training with Misspelled Knowledge for Chinese Spelling Correction (ACL2021) This repository provides the code and data of the work in ACL20

197 Nov 26, 2022
nfelo: a power ranking, prediction, and betting model for the NFL

nfelo nfelo is a power ranking, prediction, and betting model for the NFL. Nfelo take's 538's Elo framework and further adapts it for the NFL, hence t

6 Nov 22, 2022
Official project repository for 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination'

NCAE_UAD Official project repository of 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination' Abstract In this p

Jongmin Andrew Yu 2 Feb 10, 2022
🌾 PASTIS 🌾 Panoptic Agricultural Satellite TIme Series

🌾 PASTIS 🌾 Panoptic Agricultural Satellite TIme Series (optical and radar) The PASTIS Dataset Dataset presentation PASTIS is a benchmark dataset for

86 Jan 04, 2023
AI virtual gym is an AI program which can be used to exercise and can be used to see if we are doing the exercises

AI virtual gym is an AI program which can be used to exercise and can be used to see if we are doing the exercises

4 Feb 13, 2022
Official PyTorch implementation of GDWCT (CVPR 2019, oral)

This repository provides the official code of GDWCT, and it is written in PyTorch. Paper Image-to-Image Translation via Group-wise Deep Whitening-and-

WonwoongCho 135 Dec 02, 2022
Semantically Contrastive Learning for Low-light Image Enhancement

Semantically Contrastive Learning for Low-light Image Enhancement Here, we propose an effective semantically contrastive learning paradigm for Low-lig

48 Dec 16, 2022
PyTorch Implementation for Fracture Detection in Wrist Bone X-ray Images

wrist-d PyTorch Implementation for Fracture Detection in Wrist Bone X-ray Images note: Paper: Under Review at MPDI Diagnostics Submission Date: Novemb

Fatih UYSAL 5 Oct 12, 2022