A tight inclusion function for continuous collision detection

Overview

Tight-Inclusion Continuous Collision Detection

Build

A conservative Continuous Collision Detection (CCD) method with support for minimum separation.

You can read more about this work in our ACM Transactions on Graphics paper:

"A Large Scale Benchmark and an Inclusion-Based Algorithm forContinuous Collision Detection"

@article{Wang:2021:Benchmark,
    title   = {A Large Scale Benchmark and an Inclusion-Based Algorithm for Continuous Collision Detection},
    author  = {Bolun Wang and Zachary Ferguson and Teseo Schneider and Xin Jiang and Marco Attene and Daniele Panozzo},
    year    = 2021,
    journal = {ACM Transactions on Graphics}
}

Compiling Instruction

To compile the code, first make sure CMake is installed.

To build the library on Linux or macOS:

mkdir build
cd build
cmake ../ -DCMAKE_BUILD_TYPE=Release
make

Then you can run a CCD example:

./Tight_Inclusion_bin 

We also provide you an example to run the Sample Queries using our CCD method. You may need to install gmp before compiling the code. Then set the CMake option TIGHT_INCLUSION_WITH_TESTS as ON when compiling:

cmake ../ -DCMAKE_BUILD_TYPE=Release -DTIGHT_INCLUSION_WITH_TESTS=ON
make

Then you can run ./Tight_Inclusion_bin to test the handcrafted queries in the Sample Queries.

Usage

Include #include <tight_inclusion/inclusion_ccd.hpp>

To check edge-edge ccd, use bool inclusion_ccd::edgeEdgeCCD_double();

To check vertex-face ccd, use bool inclusion_ccd::vertexFaceCCD_double();

💡 If collision is detected, the ccd function will return true, otherwise, the ccd function will return false. Since our method is CONSERVATIVE, if the returned result is false, we guarantee that there is no collision happens. If the result is true, it is possible that there is no collision but we falsely report a collision, but we can guarantee that this happens only if the minimal distance between the two primitives in this time step is no larger than tolerance + ms + err. We wil explain these parameters below.

For both edge-edge ccd and vertex-face ccd, the input CCD query is presented by 8 vertices which are in the format of Eigen::Vector3d. Please read our code in tight_inclusion/inclusion_ccd.hpp for the correct input order of the vertices.

Beside the input vertices, there are some input and output parameters for users to tune the performace or to get more CCD information. Here is a list of the explanations of the parameters:

input:
    err                 The numerical filters of the x, y and z coordinates. It measures the errors introduced by floating-point calculation when solving inclusion functions.
    ms                  Minimum separation distance no less than 0. It guarantees that collision will be reported if the distance between the two primitives is less than ms.
    tolerance           User-specific solving precision. It is the target maximal x, y, and z length of the inclusion function. We suggest the user to set it as 1e-6.
    t_max               The time range [0, t_max] where we detect collisions. Since the input query implies the motion in time range [0, 1], t_max should no larger than 1.
    max_itr             The parameter to enable early termination of the algorithm. If you set max_itr < 0, early termination will be disabled, but this may cause longer runtime. We suggest to set max_itr = 1e6.
    CCD_TYPE            The parameter to choose collision detection algorithms. By default CCD_TYPE = 1. If set CCD_TYPE = 0, the code will switch to a naive conservative CCD algorithm, but lack of our advanced features. 
    
output:
    toi                 Time of impact. If multiple collisions happen in this time step, it will return the earlist collision time. If there is no collision, the returned toi value will be std::numeric_limits<double>::infinity().
    output_tolerance    The real solving precision. If early termination is enabled, the solving precision may not reach the target precision. This parameter will return the real solving precision when the code is terminated.

Tips

💡 The input parameter err is crucial to guarantee our algorithm to be a conservative method not affected by floating point rounding errors. To run a single query, you can set err = {{-1, -1, -1}} to enable a sub-function to calculate the real numerical filters when solving CCD. If you are integrating our CCD in simulators, you need to:

  • Include the headler: #include <tight_inclusion/interval_root_finder.hpp>.
  • Call std::array<double, 3> err_vf = inclusion_ccd::get_numerical_error() and std::array<double, 3> err_ee = inclusion_ccd::get_numerical_error()
  • Use the parameter err_ee each time you call bool inclusion_ccd::edgeEdgeCCD_double() and err_vf when you call bool inclusion_ccd::vertexFaceCCD_double().

The parameters for function inclusion_ccd::get_numerical_error() is explained below:

input:
    vertices            Vertices of the Axies-Aligned-Bounding-Box of the simulation scene. Before you run the simulation, you need to conservatively estimate the Axies-Aligned-Bounding-Box in which the meshes will located during the whole simulation process, and the vertices should be the corners of the AABB.
    check_vf            A boolean instruction showing if you are checking vertex-face or edge-edge CCD.
    using_minimum_separation    A boolean instruction. If you are using minimum-separation CCD (the input parameter ms > 0), please set it as true.

💡 For some simulators which use non-zero minimum separation distance (ms > 0) to make sure intersection-free for each time-step, we have a CMake option TIGHT_INCLUSION_WITH_NO_ZERO_TOI to avoid the returned collision time toi is 0. You need to set TIGHT_INCLUSION_WITH_NO_ZERO_TOI as ON when compiling by: cmake ../ -DCMAKE_BUILD_TYPE=Release -DTIGHT_INCLUSION_WITH_NO_ZERO_TOI=ON. Then when you use the CCD functions, the code will continue the refinement in higher precision if the output toi is 0 under the given tolerance. So, the eventually toi will not be 0.

To have a better understand, or to get more details of our Tight-Inclusion CCD algorithm, please refer to our paper.

You might also like...
Continuous Query Decomposition for Complex Query Answering in Incomplete Knowledge Graphs

Continuous Query Decomposition This repository contains the official implementation for our ICLR 2021 (Oral) paper, Complex Query Answering with Neura

On the model-based stochastic value gradient for continuous reinforcement learning

On the model-based stochastic value gradient for continuous reinforcement learning This repository is by Brandon Amos, Samuel Stanton, Denis Yarats, a

Continuous Diffusion Graph Neural Network

We present Graph Neural Diffusion (GRAND) that approaches deep learning on graphs as a continuous diffusion process and treats Graph Neural Networks (GNNs) as discretisations of an underlying PDE.

PyTorch implementation for  MINE: Continuous-Depth MPI with Neural Radiance Fields
PyTorch implementation for MINE: Continuous-Depth MPI with Neural Radiance Fields

MINE: Continuous-Depth MPI with Neural Radiance Fields Project Page | Video PyTorch implementation for our ICCV 2021 paper. MINE: Towards Continuous D

This repository contains the source code and data for reproducing results of Deep Continuous Clustering paper
This repository contains the source code and data for reproducing results of Deep Continuous Clustering paper

Deep Continuous Clustering Introduction This is a Pytorch implementation of the DCC algorithms presented in the following paper (paper): Sohil Atul Sh

This is the codebase for the ICLR 2021 paper Trajectory Prediction using Equivariant Continuous Convolution
This is the codebase for the ICLR 2021 paper Trajectory Prediction using Equivariant Continuous Convolution

Trajectory Prediction using Equivariant Continuous Convolution (ECCO) This is the codebase for the ICLR 2021 paper Trajectory Prediction using Equivar

PyTorch implementation for Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuous Sign Language Recognition.

Stochastic CSLR This is the PyTorch implementation for the ECCV 2020 paper: Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuou

Code for the ICASSP-2021 paper: Continuous Speech Separation with Conformer.

Continuous Speech Separation with Conformer Introduction We examine the use of the Conformer architecture for continuous speech separation. Conformer

A clean and robust Pytorch implementation of PPO on continuous action space.
A clean and robust Pytorch implementation of PPO on continuous action space.

PPO-Continuous-Pytorch I found the current implementation of PPO on continuous action space is whether somewhat complicated or not stable. And this is

Comments
  • Improved No Zero ToI

    Improved No Zero ToI

    • I changed the options for avoiding a zero time of impact by making the option a parameter to the CCD functions.
    • I also changed from a recursive algorithm to an iterative one with a maximum number of iterations.
    opened by zfergus 2
  • a case returned 0 TOI

    a case returned 0 TOI

    For the PT CCD case below, TICCD returned 0 TOI.

    3.5000000000e-01 0.0000000000e+00 3.5000000000e-01
    3.4604643638e-01 2.7847887896e-03 3.4658121160e-01
    3.5000819263e-01 -1.5763377304e-06 3.5001214242e-01
    3.4903882032e-01 -1.5866575093e-03 3.4560164356e-01
    0.0000000000e+00 0.0000000000e+00 0.0000000000e+00
    1.0120300789e-07 -1.4009994248e-04 -8.5653091896e-05
    -9.2976239634e-07 1.4361165221e-06 5.5168830145e-07
    1.1649271683e-04 -3.6172565398e-05 -4.7128237917e-05
    

    The format is

    node_x node_y node_z
    traingle_node0_x traingle_node0_y traingle_node0_z
    traingle_node1_x traingle_node1_y traingle_node1_z
    traingle_node2_x traingle_node2_y traingle_node2_z
    node_displacement_x node_displacement_y node_displacement_z
    traingle_node0_displacement_x traingle_node0_displacement_y traingle_node0_displacement_z
    traingle_node1_displacement_x traingle_node1_displacement_y traingle_node1_displacement_z
    traingle_node2_displacement_x traingle_node2_displacement_y traingle_node2_displacement_z
    

    I used the TICCD from the CCDWrapper repo (latest commit), and I called it like

    template <class T>
    bool Point_Triangle_CCD_TI(
        const Eigen::Matrix<T, 3, 1>& p, 
        const Eigen::Matrix<T, 3, 1>& t0, 
        const Eigen::Matrix<T, 3, 1>& t1,
        const Eigen::Matrix<T, 3, 1>& t2,
        const Eigen::Matrix<T, 3, 1>& dp, 
        const Eigen::Matrix<T, 3, 1>& dt0, 
        const Eigen::Matrix<T, 3, 1>& dt1,
        const Eigen::Matrix<T, 3, 1>& dt2,
        T eta, T thickness, T& toc)
    {
        T toc_prev = toc;
        T output_tolerance;
    
        T dist2_cur;
        Point_Triangle_Distance_Unclassified(p, t0, t1, t2, dist2_cur);
        T dist_cur = std::sqrt(dist2_cur);
        if (inclusion_ccd::vertexFaceCCD_double(p, t0, t1, t2,
            p + dp, t0 + dt0, t1 + dt1, t2 + dt2, { { -1, 0, 0 } },
            eta * (dist2_cur - thickness * thickness) / (dist_cur + thickness) + thickness,
            toc, 1e-6, toc_prev, 1e6, output_tolerance, 1))
        {
            if (toc < 1.0e-6) {
                std::cout << "PT CCD tiny!" << std::endl;
                if (inclusion_ccd::vertexFaceCCD_double(p, t0, t1, t2,
                    p + dp, t0 + dt0, t1 + dt1, t2 + dt2, { { -1, 0, 0 } },
                    thickness, toc, 1e-6, toc_prev, 1e6, output_tolerance, 1))
                {
                    toc *= (1.0 - eta);
                    return true;
                }
                else {
                    return false;
                }
            }
            return true;
        }
        return false;
    }
    
    printf("TICCD:\n");
    largestAlpha = 1;
    tstart = clock();
    if (Point_Triangle_CCD_TI(x[0], x[1], x[2], x[3], x[4], x[5], x[6], x[7], 0.1, 0.0, largestAlpha)) {
        printf("%le\n", largestAlpha);
    }
    else {
        printf("no collision\n");
    }
    printf("%.1lems\n", double(clock() - tstart) / CLOCKS_PER_SEC * 1000);
    

    The output is

    TICCD:
    PT CCD tiny!
    0.000000e+00
    1.9e+00ms
    

    However I implemented a simpler version of TICCD according to the paper as

    template <class T>
    void Point_Triangle_Distance_Vector_Unclassified(
        const Eigen::Matrix<T, 3, 1>& p, 
        const Eigen::Matrix<T, 3, 1>& t0, 
        const Eigen::Matrix<T, 3, 1>& t1,
        const Eigen::Matrix<T, 3, 1>& t2,
        const Eigen::Matrix<T, 3, 1>& dp, 
        const Eigen::Matrix<T, 3, 1>& dt0, 
        const Eigen::Matrix<T, 3, 1>& dt1,
        const Eigen::Matrix<T, 3, 1>& dt2,
        T t, T lambda, T beta,
        Eigen::Matrix<T, 3, 1>& distVec)
    {
        const Eigen::Matrix<T, 3, 1> tp = (1 - lambda - beta) * t0 + lambda * t1 + beta * t2;
        const Eigen::Matrix<T, 3, 1> dtp = (1 - lambda - beta) * dt0 + lambda * dt1 + beta * dt2;
        distVec = p + t * dp - (tp + t * dtp);
    }
    
    template <class T>
    bool Point_Triangle_CheckInterval_Unclassified(
        const Eigen::Matrix<T, 3, 1>& p, 
        const Eigen::Matrix<T, 3, 1>& t0, 
        const Eigen::Matrix<T, 3, 1>& t1,
        const Eigen::Matrix<T, 3, 1>& t2,
        const Eigen::Matrix<T, 3, 1>& dp, 
        const Eigen::Matrix<T, 3, 1>& dt0, 
        const Eigen::Matrix<T, 3, 1>& dt1,
        const Eigen::Matrix<T, 3, 1>& dt2,
        const std::array<T, 6>& interval,
        T gap)
    {
        Eigen::Matrix<T, 3, 1> distVecMax, distVecMin;
        distVecMax.setConstant(-2 * gap - 1);
        distVecMin.setConstant(2 * gap + 1);
        for (int t = 0; t < 2; ++t) {
            for (int lambda = 0; lambda < 2; ++lambda) {
                for (int beta = 0; beta < 2; ++beta) {
                    if (lambda == 1 && beta == 1) {
                        continue;
                    }
                    Eigen::Matrix<T, 3, 1> distVec;
                    Point_Triangle_Distance_Vector_Unclassified(p, t0, t1, t2, dp, dt0, dt1, dt2, 
                        interval[t], interval[2 + lambda], interval[4 + beta], distVec);
                    distVecMax = distVecMax.array().max(distVec.array());
                    distVecMin = distVecMin.array().min(distVec.array());
                }
            }
        }
        return (distVecMax.array() >= -gap).all() && (distVecMin.array() <= gap).all();
    }
    template <class T>
    bool Point_Triangle_TICCD(
        const Eigen::Matrix<T, 3, 1>& p, 
        const Eigen::Matrix<T, 3, 1>& t0, 
        const Eigen::Matrix<T, 3, 1>& t1,
        const Eigen::Matrix<T, 3, 1>& t2,
        Eigen::Matrix<T, 3, 1> dp, 
        Eigen::Matrix<T, 3, 1> dt0, 
        Eigen::Matrix<T, 3, 1> dt1,
        Eigen::Matrix<T, 3, 1> dt2,
        T eta, T thickness, T& toc)
    {
        T dist2_cur;
        Point_Triangle_Distance_Unclassified(p, t0, t1, t2, dist2_cur);
        T dist_cur = std::sqrt(dist2_cur);
        T gap = eta * (dist2_cur - thickness * thickness) / (dist_cur + thickness);
    
        T tTol = 1e-3;
    
        std::vector<std::array<T, 6>> roots;
        std::deque<std::array<T, 6>> intervals;
        intervals.push_back({0, toc, 0, 1, 0, 1});
        int iterAmt = 0;
        while (!intervals.empty()) {
            ++iterAmt;
    
            std::array<T, 6> curIV = intervals.front();
            intervals.pop_front();
    
            // check
            if (Point_Triangle_CheckInterval_Unclassified(p, t0, t1, t2, dp, dt0, dt1, dt2, curIV, gap)) {
                if (curIV[0] && curIV[1] - curIV[0] < tTol) {
                    // root found within tTol
                    roots.emplace_back(curIV);
                }
                else {
                    // split interval and push back
                    std::vector<T> intervalLen({curIV[1] - curIV[0], curIV[3] - curIV[2], curIV[5] - curIV[4]});
                    switch (std::max_element(intervalLen.begin(), intervalLen.end()) - intervalLen.begin()) {
                    case 0:
                        intervals.push_back({curIV[0], (curIV[1] + curIV[0]) / 2, curIV[2], curIV[3], curIV[4], curIV[5]});
                        intervals.push_back({(curIV[1] + curIV[0]) / 2, curIV[1], curIV[2], curIV[3], curIV[4], curIV[5]});
                        break;
    
                    case 1:
                        intervals.push_back({curIV[0], curIV[1], curIV[2], (curIV[2] + curIV[3]) / 2, curIV[4], curIV[5]});
                        intervals.push_back({curIV[0], curIV[1], (curIV[2] + curIV[3]) / 2, curIV[3], curIV[4], curIV[5]});
                        break;
    
                    case 2:
                        intervals.push_back({curIV[0], curIV[1], curIV[2], curIV[3], curIV[4], (curIV[4] + curIV[5]) / 2});
                        intervals.push_back({curIV[0], curIV[1], curIV[2], curIV[3], (curIV[4] + curIV[5]) / 2, curIV[5]});
                        break;
                    }
                }
            }
        }
        
        if (roots.empty()) {
            printf("TICCD PT converged with %d iters\n", iterAmt);
            return false;
        }
        else {
            for (const auto& rI : roots) {
                if (toc > rI[0]) {
                    toc = rI[0];
                }
            }
            printf("TICCD PT converged with %d iters\n", iterAmt);
            return true;
        }
    }
    

    and it kinds of worked on this case and output

    TICCD PT converged with 6143 iters
    4.882812e-04
    5.3e-01ms
    

    which with tighter convergence tolerance might be able to reach the ground truth solution -- no collision.

    In my implementation, I didn't include the epsilons in formula (5) in the paper. Is it the main cause here?

    opened by liminchen 2
  • Refactored and cleaned up code

    Refactored and cleaned up code

    I tested and timed it on the entire dataset. I get 0 FN, a couple of fewer FP on the handcrafted data, and the timing is a little faster on the simulation and faster on handcrafted.

    opened by zfergus 0
Releases(v1.0.2)
Owner
Continuous Collision Detection
Code for continuous collision detection methods bechmarked in "A Large Scale Benchmark and an Inclusion-Based Algorithm for Continuous Collision Detection"
Continuous Collision Detection
MGFN: Multi-Graph Fusion Networks for Urban Region Embedding was accepted by IJCAI-2022.

Multi-Graph Fusion Networks for Urban Region Embedding (IJCAI-22) This is the implementation of Multi-Graph Fusion Networks for Urban Region Embedding

202 Nov 18, 2022
This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation".

ObjProp Introduction This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Insta

Anirudh S Chakravarthy 6 May 03, 2022
Python library to receive live stream events like comments and gifts in realtime from TikTok LIVE.

TikTokLive A python library to connect to and read events from TikTok's LIVE service A python library to receive and decode livestream events such as

Isaac Kogan 277 Dec 23, 2022
Keras Implementation of The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation by (Simon Jégou, Michal Drozdzal, David Vazquez, Adriana Romero, Yoshua Bengio)

The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation: Work In Progress, Results can't be replicated yet with the m

Yad Konrad 196 Aug 30, 2022
A pytorch implementation of Reading Wikipedia to Answer Open-Domain Questions.

DrQA A pytorch implementation of the ACL 2017 paper Reading Wikipedia to Answer Open-Domain Questions (DrQA). Reading comprehension is a task to produ

Runqi Yang 394 Nov 08, 2022
An implementation for Neural Architecture Search with Random Labels (CVPR 2021 poster) on Pytorch.

Neural Architecture Search with Random Labels(RLNAS) Introduction This project provides an implementation for Neural Architecture Search with Random L

18 Nov 08, 2022
Sionna: An Open-Source Library for Next-Generation Physical Layer Research

Sionna: An Open-Source Library for Next-Generation Physical Layer Research Sionnaâ„¢ is an open-source Python library for link-level simulations of digi

NVIDIA Research Projects 313 Dec 22, 2022
Self-Supervised Monocular 3D Face Reconstruction by Occlusion-Aware Multi-view Geometry Consistency[ECCV 2020]

Self-Supervised Monocular 3D Face Reconstruction by Occlusion-Aware Multi-view Geometry Consistency(ECCV 2020) This is an official python implementati

304 Jan 03, 2023
Tooling for the Common Objects In 3D dataset.

CO3D: Common Objects In 3D This repository contains a set of tools for working with the Common Objects in 3D (CO3D) dataset. Download the dataset The

Facebook Research 724 Jan 06, 2023
This repository builds a basic vision transformer from scratch so that one beginner can understand the theory of vision transformer.

vision-transformer-from-scratch This repository includes several kinds of vision transformers from scratch so that one beginner can understand the the

1 Dec 24, 2021
An open source app to help calm you down when needed.

By: Seanpm2001, Et; Al. Top README.md Read this article in a different language Sorted by: A-Z Sorting options unavailable ( af Afrikaans Afrikaans |

Sean P. Myrick V19.1.7.2 2 Oct 24, 2022
Official code repository for ICCV 2021 paper: Gravity-Aware Monocular 3D Human Object Reconstruction

GraviCap Official code repository for ICCV 2021 paper: Gravity-Aware Monocular 3D Human Object Reconstruction. Gravity-Aware Monocular 3D Human-Object

Rishabh Dabral 15 Dec 09, 2022
Research using Cirq!

ReCirq Research using Cirq! This project contains modules for running quantum computing applications and experiments through Cirq and Quantum Engine.

quantumlib 230 Dec 29, 2022
HAR-stacked-residual-bidir-LSTMs - Deep stacked residual bidirectional LSTMs for HAR

HAR-stacked-residual-bidir-LSTM The project is based on this repository which is presented as a tutorial. It consists of Human Activity Recognition (H

Guillaume Chevalier 287 Dec 27, 2022
This repository contains the code for the CVPR 2020 paper "Differentiable Volumetric Rendering: Learning Implicit 3D Representations without 3D Supervision"

Differentiable Volumetric Rendering Paper | Supplementary | Spotlight Video | Blog Entry | Presentation | Interactive Slides | Project Page This repos

697 Jan 06, 2023
Tensorboard for pytorch (and chainer, mxnet, numpy, ...)

tensorboardX Write TensorBoard events with simple function call. The current release (v2.3) is tested on anaconda3, with PyTorch 1.8.1 / torchvision 0

Tzu-Wei Huang 7.5k Dec 28, 2022
Hso-groupie - A pwnable challenge in Real World CTF 4th

Hso-groupie - A pwnable challenge in Real World CTF 4th

Riatre Foo 42 Dec 05, 2022
Official code repository for the publication "Latent Equilibrium: A unified learning theory for arbitrarily fast computation with arbitrarily slow neurons"

Latent Equilibrium: A unified learning theory for arbitrarily fast computation with arbitrarily slow neurons This repository contains the code to repr

Computational Neuroscience, University of Bern 3 Aug 04, 2022
This is a project based on ConvNets used to identify whether a road is clean or dirty. We have used MobileNet as our base architecture and the weights are based on imagenet.

PROJECT TITLE: CLEAN/DIRTY ROAD DETECTION USING TRANSFER LEARNING Description: This is a project based on ConvNets used to identify whether a road is

Faizal Karim 3 Nov 06, 2022
Robot Hacking Manual (RHM). From robotics to cybersecurity. Papers, notes and writeups from a journey into robot cybersecurity.

RHM: Robot Hacking Manual Download in PDF RHM v0.4 ┃ Read online The Robot Hacking Manual (RHM) is an introductory series about cybersecurity for robo

Víctor Mayoral Vilches 233 Dec 30, 2022