Official repo for BMVC2021 paper ASFormer: Transformer for Action Segmentation

Related tags

Deep LearningASFormer
Overview

ASFormer: Transformer for Action Segmentation

This repo provides training & inference code for BMVC 2021 paper: ASFormer: Transformer for Action Segmentation.

Enviroment

Pytorch == 1.1.0, torchvision == 0.3.0, python == 3.6, CUDA=10.1

Reproduce our results

1. Download the dataset data.zip at (https://mega.nz/#!O6wXlSTS!wcEoDT4Ctq5HRq_hV-aWeVF1_JB3cacQBQqOLjCIbc8) or (https://zenodo.org/record/3625992#.Xiv9jGhKhPY). 
2. Unzip the data.zip file to the current folder. There are three datasets in the ./data folder, i.e. ./data/breakfast, ./data/50salads, ./data/gtea
3. Download the pre-trained models at (https://pan.baidu.com/s/1zf-d-7eYqK-IxroBKTxDfg). There are pretrained models for three datasets, i.e. ./models/50salads, ./models/breakfast, ./models/gtea
4. Run python main.py --action=predict --dataset=50salads/gtea/breakfast --split=1/2/3/4/5 to generate predicted results for each split.
5. Run python eval.py --dataset=50salads/gtea/breakfast --split=0/1/2/3/4/5 to evaluate the performance. **NOTE**: split=0 will evaulate the average results for all splits, It needs to be done after you complete all split predictions.

Train your own model

Also, you can retrain the model by yourself with following command.

python main.py --action=train --dataset=50salads/gtea/breakfast --split=1/2/3/4/5

The training process is very stable in our experiments. It convergences very fast and is not sensitive to the number of training epochs.

Demo for using ASFormer as your backbone

In our paper, we replace the original TCN-based backbone model MS-TCN in ASRF with our ASFormer. The new model achieves even higher results on the 50salads dataset than the original ASRF. Code is Here.


If you find our repo useful, please give us a star and cite

@inproceedings{chinayi_ASformer,  
	author={Fangqiu Yi and Hongyu Wen and Tingting Jiang}, 
	booktitle={The British Machine Vision Conference (BMVC)},   
	title={ASFormer: Transformer for Action Segmentation},
	year={2021},  
}

Feel free to raise a issue if you got trouble with our code.

Jittor 64*64 implementation of StyleGAN

StyleGanJittor (Tsinghua university computer graphics course) Overview Jittor 64

Song Shengyu 3 Jan 20, 2022
Fuwa-http - The http client implementation for the fuwa eco-system

Fuwa HTTP The HTTP client implementation for the fuwa eco-system Example import

Fuwa 2 Feb 16, 2022
Pytorch implementation of VAEs for heterogeneous likelihoods.

Heterogeneous VAEs Beware: This repository is under construction 🛠️ Pytorch implementation of different VAE models to model heterogeneous data. Here,

Adrián Javaloy 35 Nov 29, 2022
A pytorch-based real-time segmentation model for autonomous driving

CFPNet: Channel-Wise Feature Pyramid for Real-Time Semantic Segmentation This project contains the Pytorch implementation for the proposed CFPNet: pap

342 Dec 22, 2022
Enigma-Plus - Python based Enigma machine simulator with some extra features

Enigma-Plus Python based Enigma machine simulator with some extra features Examp

1 Jan 05, 2022
Self Governing Neural Networks (SGNN): the Projection Layer

Self Governing Neural Networks (SGNN): the Projection Layer A SGNN's word projections preprocessing pipeline in scikit-learn In this notebook, we'll u

Guillaume Chevalier 22 Nov 06, 2022
Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation

CorDA Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation Prerequisite Please create and activate the follo

Qin Wang 60 Nov 30, 2022
CVPRW 2021: How to calibrate your event camera

E2Calib: How to Calibrate Your Event Camera This repository contains code that implements video reconstruction from event data for calibration as desc

Robotics and Perception Group 104 Nov 16, 2022
An open-access benchmark and toolbox for electricity price forecasting

epftoolbox The epftoolbox is the first open-access library for driving research in electricity price forecasting. Its main goal is to make available a

97 Dec 05, 2022
Graph-total-spanning-trees - A Python script to get total number of Spanning Trees in a Graph

Total number of Spanning Trees in a Graph This is a python script just written f

Mehdi I. 0 Jul 18, 2022
Simple Python project using Opencv and datetime package to recognise faces and log attendance data in a csv file.

Attendance-System-based-on-Facial-recognition-Attendance-data-stored-in-csv-file- Simple Python project using Opencv and datetime package to recognise

3 Aug 09, 2022
Neural Koopman Lyapunov Control

Neural-Koopman-Lyapunov-Control Code for our paper: Neural Koopman Lyapunov Control Requirements dReal4: v4.19.02.1 PyTorch: 1.2.0 The learning framew

Vrushabh Zinage 6 Dec 24, 2022
A Factor Model for Persistence in Investment Manager Performance

Factor-Model-Manager-Performance A Factor Model for Persistence in Investment Manager Performance I apply methods and processes similar to those used

Omid Arhami 1 Dec 01, 2021
Image-Scaling Attacks and Defenses

Image-Scaling Attacks & Defenses This repository belongs to our publication: Erwin Quiring, David Klein, Daniel Arp, Martin Johns and Konrad Rieck. Ad

Erwin Quiring 163 Nov 21, 2022
Python code for loading the Aschaffenburg Pose Dataset.

Aschaffenburg Pose Dataset (APD) This repository contains Python code for loading and filtering the Aschaffenburg Pose Dataset. The dataset itself and

1 Nov 26, 2021
A community run, 5-day PyTorch Deep Learning Bootcamp

Deep Learning Winter School, November 2107. Tel Aviv Deep Learning Bootcamp : http://deep-ml.com. About Tel-Aviv Deep Learning Bootcamp is an intensiv

Shlomo Kashani. 1.3k Sep 04, 2021
This game was designed to encourage young people not to gamble on lotteries, as the probablity of correctly guessing the number is infinitesimal!

Lottery Simulator 2022 for Web Launch Application Developed by John Seong in Ontario. This game was designed to encourage young people not to gamble o

John Seong 2 Sep 02, 2022
Using fully convolutional networks for semantic segmentation with caffe for the cityscapes dataset

Using fully convolutional networks for semantic segmentation (Shelhamer et al.) with caffe for the cityscapes dataset How to get started Download the

Simon Guist 27 Jun 06, 2022
Fast image augmentation library and easy to use wrapper around other libraries. Documentation: https://albumentations.ai/docs/ Paper about library: https://www.mdpi.com/2078-2489/11/2/125

Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc

11.4k Jan 09, 2023
Personals scripts using ageitgey/face_recognition

HOW TO USE pip3 install requirements.txt Add some pictures of known people in the folder 'people' : a) Create a folder called by the name of the perso

Antoine Bollengier 1 Jan 06, 2022