(AAAI2020)Grapy-ML: Graph Pyramid Mutual Learning for Cross-dataset Human Parsing

Overview

Grapy-ML: Graph Pyramid Mutual Learning for Cross-dataset Human Parsing

This repository contains pytorch source code for AAAI2020 oral paper: Grapy-ML: Graph Pyramid Mutual Learning for Cross-dataset Human Parsing by Haoyu He, Jing Zhang, Qiming Zhang and Dacheng Tao.


Grapy-ML:

GPM


Getting Started:

Environment:

  • Pytorch = 1.1.0

  • torchvision

  • scipy

  • tensorboardX

  • numpy

  • opencv-python

  • matplotlib

Data Preparation:

You need to download the three datasets. The CIHP dataset and ATR dataset can be found in this repository and our code is heavily borrowed from it as well.

Then, the datasets should be arranged in the following folder, and images should be rearranged with the provided file structure.

/data/dataset/

Testing:

The pretrain models and some trained models are provided here for testing and training.

Model Name Description Derived from
deeplab_v3plus_v3.pth The Deeplab v3+'s pretrain weights
CIHP_pretrain.pth The reproduced Deeplab v3+ model trained on CIHP dataset deeplab_v3plus_v3.pth
CIHP_trained.pth GPM model trained on CIHP dataset CIHP_pretrain.pth
deeplab_multi-dataset.pth The reproduced multi-task learning Deeplab v3+ model trained on CIHP, PASCAL-Person-Part and ATR dataset deeplab_v3plus_v3.pth
GPM-ML_multi-dataset.pth Grapy-ML model trained on CIHP, PASCAL-Person-Part and ATR dataset deeplab_multi-dataset.pth
GPM-ML_finetune_PASCAL.pth Grapy-ML model finetuned on PASCAL-Person-Part dataset GPM-ML_multi-dataset.pth

To test, run the following two scripts:

bash eval_gpm.sh
bash eval_gpm_ml.sh

Training:

GPM:

During training, you first need to get the Deeplab pretrain model(e.g. CIHP_dlab.pth) on each dataset. Such act aims to provide a trustworthy initial raw result for the GSA operation in GPM.

bash train_dlab.sh

The imageNet pretrain model is provided in the following table, and you should swith the dataset name and target classes to the dataset you want in the script. (CIHP: 20 classes, PASCAL: 7 classes and ATR: 18 classes)

In the next step, you should utilize the Deeplab pretrain model to further train the GPM model.

bash train_gpm.sh 

It is recommended to follow the training settings in our paper to reproduce the results.

GPM-ML:

Firstly, you can conduct the deeplab pretrain process by the following script:

bash train_dlab_ml.sh

The multi-dataset Deeplab V3+ is transformed as a simple multi-task task.

Then, you can train the GPM-ML model with the training set from all three datasets by:

bash train_gpm_ml_all.sh

After this phase, the first two levels of the GPM-ML model would be more robust and generalized.

Finally, you can try to finetune on each dataset by the unified pretrain model.

bash train_gpm_ml_pascal.sh

Citation:

@inproceedings{he2020grapy,
title={Grapy-ML: Graph Pyramid Mutual Learning for Cross-dataset Human Parsing},
author={He, Haoyu and Zhang, Jing and Zhang, Qiming and Tao, Dacheng},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
year={2020}
}

Maintainer:

[email protected]

A code generator from ONNX to PyTorch code

onnx-pytorch Generating pytorch code from ONNX. Currently support onnx==1.9.0 and torch==1.8.1. Installation From PyPI pip install onnx-pytorch From

Wenhao Hu 94 Jan 06, 2023
A Probabilistic End-To-End Task-Oriented Dialog Model with Latent Belief States towards Semi-Supervised Learning

LABES This is the code for EMNLP 2020 paper "A Probabilistic End-To-End Task-Oriented Dialog Model with Latent Belief States towards Semi-Supervised L

17 Sep 28, 2022
Official implementation for (Show, Attend and Distill: Knowledge Distillation via Attention-based Feature Matching, AAAI-2021)

Show, Attend and Distill: Knowledge Distillation via Attention-based Feature Matching Official pytorch implementation of "Show, Attend and Distill: Kn

Clova AI Research 80 Dec 16, 2022
Animal Sound Classification (Cats Vrs Dogs Audio Sentiment Classification)

this is a simple artificial neural network model using deep learning and torch-audio to classify cats and dog sounds.

crispengari 3 Dec 05, 2022
Implementation of the CVPR 2021 paper "Online Multiple Object Tracking with Cross-Task Synergy"

Online Multiple Object Tracking with Cross-Task Synergy This repository is the implementation of the CVPR 2021 paper "Online Multiple Object Tracking

54 Oct 15, 2022
Cl datasets - PyTorch image dataloaders and utility functions to load datasets for supervised continual learning

Continual learning datasets Introduction This repository contains PyTorch image

berjaoui 5 Aug 28, 2022
Official implementation for "Low-light Image Enhancement via Breaking Down the Darkness"

Low-light Image Enhancement via Breaking Down the Darkness by Qiming Hu, Xiaojie Guo. 1. Dependencies Python3 PyTorch=1.0 OpenCV-Python, TensorboardX

Qiming Hu 30 Jan 01, 2023
Video Frame Interpolation with Transformer (CVPR2022)

VFIformer Official PyTorch implementation of our CVPR2022 paper Video Frame Interpolation with Transformer Dependencies python = 3.8 pytorch = 1.8.0

DV Lab 63 Dec 16, 2022
PyTorch implementation of HDN(Homography Decomposition Networks) for planar object tracking

Homography Decomposition Networks for Planar Object Tracking This project is the offical PyTorch implementation of HDN(Homography Decomposition Networ

CaptainHook 48 Dec 15, 2022
InferPy: Deep Probabilistic Modeling with Tensorflow Made Easy

InferPy: Deep Probabilistic Modeling Made Easy InferPy is a high-level API for probabilistic modeling written in Python and capable of running on top

PGM-Lab 141 Oct 13, 2022
The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop.

AICITY2021_Track2_DMT The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop. Introduction

Hao Luo 91 Dec 21, 2022
Inference code for "StylePeople: A Generative Model of Fullbody Human Avatars" paper. This code is for the part of the paper describing video-based avatars.

NeuralTextures This is repository with inference code for paper "StylePeople: A Generative Model of Fullbody Human Avatars" (CVPR21). This code is for

Visual Understanding Lab @ Samsung AI Center Moscow 18 Oct 06, 2022
Normalization Calibration (NorCal) for Long-Tailed Object Detection and Instance Segmentation

NorCal Normalization Calibration (NorCal) for Long-Tailed Object Detection and Instance Segmentation On Model Calibration for Long-Tailed Object Detec

Tai-Yu (Daniel) Pan 24 Dec 25, 2022
This is an official implementation for "PlaneRecNet".

PlaneRecNet This is an official implementation for PlaneRecNet: A multi-task convolutional neural network provides instance segmentation for piece-wis

yaxu 50 Nov 17, 2022
This repo contains the implementation of the algorithm proposed in Off-Belief Learning, ICML 2021.

Off-Belief Learning Introduction This repo contains the implementation of the algorithm proposed in Off-Belief Learning, ICML 2021. Environment Setup

Facebook Research 32 Jan 05, 2023
Distributing Deep Learning Hyperparameter Tuning for 3D Medical Image Segmentation

DistMIS Distributing Deep Learning Hyperparameter Tuning for 3D Medical Image Segmentation. DistriMIS Distributing Deep Learning Hyperparameter Tuning

HiEST 2 Sep 09, 2022
For medical image segmentation

LeViT_UNet For medical image segmentation Our model is based on LeViT (https://github.com/facebookresearch/LeViT). You'd better gitclone its codes. Th

13 Dec 24, 2022
GradAttack is a Python library for easy evaluation of privacy risks in public gradients in Federated Learning

GradAttack is a Python library for easy evaluation of privacy risks in public gradients in Federated Learning, as well as corresponding mitigation strategies.

129 Dec 30, 2022
Source code of D-HAN: Dynamic News Recommendation with Hierarchical Attention Network

D-HAN The source code of D-HAN This is the source code of D-HAN: Dynamic News Recommendation with Hierarchical Attention Network. However, only the co

30 Sep 22, 2022
Supervised multi-SNE (S-multi-SNE): Multi-view visualisation and classification

S-multi-SNE Supervised multi-SNE (S-multi-SNE): Multi-view visualisation and classification A repository containing the code to reproduce the findings

Theodoulos Rodosthenous 3 Apr 15, 2022