ICCV2021 - Mining Contextual Information Beyond Image for Semantic Segmentation

Related tags

Deep Learningmcibi
Overview

Introduction

The official repository for "Mining Contextual Information Beyond Image for Semantic Segmentation". Our full code has been merged into sssegmentation.

Abstract

This paper studies the context aggregation problem in semantic image segmentation. The existing researches focus on improving the pixel representations by aggregating the contextual information within individual images. Though impressive, these methods neglect the significance of the representations of the pixels of the corresponding class beyond the input image. To address this, this paper proposes to mine the contextual information beyond individual images to further augment the pixel representations. We first set up a feature memory module, which is updated dynamically during training, to store the dataset-level representations of various categories. Then, we learn class probability distribution of each pixel representation under the supervision of the ground-truth segmentation. At last, the representation of each pixel is augmented by aggregating the dataset-level representations based on the corresponding class probability distribution. Furthermore, by utilizing the stored dataset-level representations, we also propose a representation consistent learning strategy to make the classification head better address intra-class compactness and inter-class dispersion. The proposed method could be effortlessly incorporated into existing segmentation frameworks (e.g., FCN, PSPNet, OCRNet and DeepLabV3) and brings consistent performance improvements. Mining contextual information beyond image allows us to report state-of-the-art performance on various benchmarks: ADE20K, LIP, Cityscapes and COCO-Stuff.

Framework

img

Performance

COCOStuff-10k

Model Backbone Crop Size Schedule Train/Eval Set mIoU/mIoU (ms+flip) Download
DeepLabV3 R-50-D8 512x512 LR/POLICY/BS/EPOCH: 0.001/poly/16/110 train/test 38.84%/39.68% model | log
DeepLabV3 R-101-D8 512x512 LR/POLICY/BS/EPOCH: 0.001/poly/16/110 train/test 39.84%/41.49% model | log
DeepLabV3 S-101-D8 512x512 LR/POLICY/BS/EPOCH: 0.001/poly/32/150 train/test 41.18%/42.15% model | log
DeepLabV3 HRNetV2p-W48 512x512 LR/POLICY/BS/EPOCH: 0.001/poly/16/110 train/test 39.77%/41.35% model | log
DeepLabV3 ViT-Large 512x512 LR/POLICY/BS/EPOCH: 0.001/poly/16/110 train/test 44.01%/45.23% model | log

ADE20k

Model Backbone Crop Size Schedule Train/Eval Set mIoU/mIoU (ms+flip) Download
DeepLabV3 R-50-D8 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/130 train/val 44.39%/45.95% model | log
DeepLabV3 R-101-D8 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/130 train/val 45.66%/47.22% model | log
DeepLabV3 S-101-D8 512x512 LR/POLICY/BS/EPOCH: 0.004/poly/16/180 train/val 46.63%/47.36% model | log
DeepLabV3 HRNetV2p-W48 512x512 LR/POLICY/BS/EPOCH: 0.004/poly/16/180 train/val 45.79%/47.34% model | log
DeepLabV3 ViT-Large 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/130 train/val 49.73%/50.99% model | log

CityScapes

Model Backbone Crop Size Schedule Train/Eval Set mIoU (ms+flip) Download
DeepLabV3 R-50-D8 512x1024 LR/POLICY/BS/EPOCH: 0.01/poly/16/440 trainval/test 79.90% model | log
DeepLabV3 R-101-D8 512x1024 LR/POLICY/BS/EPOCH: 0.01/poly/16/440 trainval/test 82.03% model | log
DeepLabV3 S-101-D8 512x1024 LR/POLICY/BS/EPOCH: 0.01/poly/16/500 trainval/test 81.59% model | log
DeepLabV3 HRNetV2p-W48 512x1024 LR/POLICY/BS/EPOCH: 0.01/poly/16/500 trainval/test 82.55% model | log

LIP

Model Backbone Crop Size Schedule Train/Eval Set mIoU/mIoU (flip) Download
DeepLabV3 R-50-D8 473x473 LR/POLICY/BS/EPOCH: 0.01/poly/32/150 train/val 53.73%/54.08% model | log
DeepLabV3 R-101-D8 473x473 LR/POLICY/BS/EPOCH: 0.01/poly/32/150 train/val 55.02%/55.42% model | log
DeepLabV3 S-101-D8 473x473 LR/POLICY/BS/EPOCH: 0.007/poly/40/150 train/val 56.21%/56.34% model | log
DeepLabV3 HRNetV2p-W48 473x473 LR/POLICY/BS/EPOCH: 0.007/poly/40/150 train/val 56.40%/56.99% model | log

Citation

If this code is useful for your research, please consider citing:

@article{jin2021mining,
  title={Mining Contextual Information Beyond Image for Semantic Segmentation},
  author={Jin, Zhenchao and Gong, Tao and Yu, Dongdong and Chu, Qi and Wang, Jian and Wang, Changhu and Shao, Jie},
  journal={arXiv preprint arXiv:2108.11819},
  year={2021}
}
Owner
student
Semi-Supervised Semantic Segmentation with Cross-Consistency Training (CCT)

Semi-Supervised Semantic Segmentation with Cross-Consistency Training (CCT) Paper, Project Page This repo contains the official implementation of CVPR

Yassine 344 Dec 29, 2022
Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Yihong Sun 12 Nov 15, 2022
TLDR: Twin Learning for Dimensionality Reduction

TLDR (Twin Learning for Dimensionality Reduction) is an unsupervised dimensionality reduction method that combines neighborhood embedding learning with the simplicity and effectiveness of recent self

NAVER 105 Dec 28, 2022
The code repository for "PyCIL: A Python Toolbox for Class-Incremental Learning" in PyTorch.

PyCIL: A Python Toolbox for Class-Incremental Learning Introduction • Methods Reproduced • Reproduced Results • How To Use • License • Acknowledgement

Fu-Yun Wang 258 Dec 31, 2022
This is a collection of our NAS and Vision Transformer work.

AutoML - Neural Architecture Search This is a collection of our AutoML-NAS work iRPE (NEW): Rethinking and Improving Relative Position Encoding for Vi

Microsoft 832 Jan 08, 2023
Official repository of the paper "A Variational Approximation for Analyzing the Dynamics of Panel Data". Mixed Effect Neural ODE. UAI 2021.

Official repository of the paper (UAI 2021) "A Variational Approximation for Analyzing the Dynamics of Panel Data", Mixed Effect Neural ODE. Panel dat

Jurijs Nazarovs 7 Nov 26, 2022
A TensorFlow implementation of Neural Program Synthesis from Diverse Demonstration Videos

ViZDoom http://vizdoom.cs.put.edu.pl ViZDoom allows developing AI bots that play Doom using only the visual information (the screen buffer). It is pri

Hyeonwoo Noh 1 Aug 19, 2020
This code finds bounding box of a single human mouth.

This code finds bounding box of a single human mouth. In comparison to other face segmentation methods, it is relatively insusceptible to open mouth conditions, e.g., yawning, surgical robots, etc. T

iThermAI 4 Nov 27, 2022
Dahua Camera and Doorbell Home Assistant Integration

Home Assistant Dahua Integration The Dahua Home Assistant integration allows you to integrate your Dahua cameras and doorbells in Home Assistant. It's

Ronnie 216 Dec 26, 2022
Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions

Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions Usage Clone the code to local. https://github.com/tanlab/MI

Computational Biology and Machine Learning lab @ TOBB ETU 3 Oct 18, 2022
Colab notebook for openai/glide-text2im.

GLIDE text2im on Colab This repository provides a Colab notebook to produce images conditioned on text prompts with GLIDE [1]. Usage Run text2im.ipynb

Wok 19 Oct 19, 2022
Codebase for Time-series Generative Adversarial Networks (TimeGAN)

Codebase for Time-series Generative Adversarial Networks (TimeGAN)

Jinsung Yoon 532 Dec 31, 2022
Implementation of Kronecker Attention in Pytorch

Kronecker Attention Pytorch Implementation of Kronecker Attention in Pytorch. Results look less than stellar, but if someone found some context where

Phil Wang 16 May 06, 2022
Open-Ended Commonsense Reasoning (NAACL 2021)

Open-Ended Commonsense Reasoning Quick links: [Paper] | [Video] | [Slides] | [Documentation] This is the repository of the paper, Differentiable Open-

(Bill) Yuchen Lin 31 Oct 19, 2022
Unofficial implementation of the ImageNet, CIFAR 10 and SVHN Augmentation Policies learned by AutoAugment using pillow

AutoAugment - Learning Augmentation Policies from Data Unofficial implementation of the ImageNet, CIFAR10 and SVHN Augmentation Policies learned by Au

Philip Popien 1.3k Jan 02, 2023
Toward Multimodal Image-to-Image Translation

BicycleGAN Project Page | Paper | Video Pytorch implementation for multimodal image-to-image translation. For example, given the same night image, our

Jun-Yan Zhu 1.4k Dec 22, 2022
ICLR 2021: Pre-Training for Context Representation in Conversational Semantic Parsing

SCoRe: Pre-Training for Context Representation in Conversational Semantic Parsing This repository contains code for the ICLR 2021 paper "SCoRE: Pre-Tr

Microsoft 28 Oct 02, 2022
This is the official implementation code repository of Underwater Light Field Retention : Neural Rendering for Underwater Imaging (Accepted by CVPR Workshop2022 NTIRE)

Underwater Light Field Retention : Neural Rendering for Underwater Imaging (UWNR) (Accepted by CVPR Workshop2022 NTIRE) Authors: Tian Ye†, Sixiang Che

jmucsx 17 Dec 14, 2022
Asymmetric Bilateral Motion Estimation for Video Frame Interpolation, ICCV2021

ABME (ICCV2021) Junheum Park, Chul Lee, and Chang-Su Kim Official PyTorch Code for "Asymmetric Bilateral Motion Estimation for Video Frame Interpolati

Junheum Park 86 Dec 28, 2022
Huawei Hackathon 2021 - Sweden (Stockholm)

huawei-hackathon-2021 Contributors DrakeAxelrod Challenge Requirements: python=3.8.10 Standard libraries (no importing) Important factors: Data depend

Drake Axelrod 32 Nov 08, 2022