Chinese Named Entity Recognization (BiLSTM with PyTorch)

Overview

BiLSTM-CRF for Name Entity Recognition PyTorch version

A PyTorch implemention of Bi-LSTM-CRF model for Chinese Named Entity Recognition.

使用 PyTorch 实现 Bi-LSTM-CRF 模型,用来完成中文命名实体识别任务。

Dataset

三甲医院肺结节数据集,20000+字,BIO格式,形如:

中	B-ORG
共	I-ORG
中	I-ORG
央	I-ORG
致	O
中	B-ORG
国	I-ORG
致	I-ORG
公	I-ORG
党	I-ORG
十	I-ORG
一	I-ORG
大	I-ORG
的	O
贺	O
词	O

ATTENTION: 在处理自己数据集的时候需要注意:

  • 字与标签之间用tab("\t")隔开
  • 其中句子与句子之间使用空行隔开
  • 文件最后以两个换行结束

训练数据和测试数据存放在 datasets 目录下,在 data.py 中有具体读取数据的代码。

Project Structure

./
├── README.md
├── __pycache__
├── config.py                       模型超参数配置
├── data.py                         数据转换 加载词表
├── datasets                        数据集
│   ├── dct.pkl                     词表
│   ├── test_data.txt               训练集
│   └── train_data.txt              测试集
├── evaluate.py                     评估模型
├── log                             nohup训练输出日志
│   └── nohup.out
├── main.py                         训练
├── metric.py                       计算f1评估指标
├── model.py                        模型构建
├── path.py                         所有路径
├── predict.py                      实体抽取预测
├── pulmonary_label2id.json         所有label
├── requirements.txt                pip包
├── statistic.py                    统计最长句子长度
├── trainer.py                      训练器构建
├── utils
│   ├── __init__.py
│   ├── __pycache__
│   ├── earlystopping.py            早停工具
│   └── load_data.py                构建label2id工具
└── weights                         权重
    └── xxx.pth

6 directories, 32 files

Steps

  1. 替换数据集
  2. 修改path.py中的地址
  3. 修改data.py中的文本最长长度SEQUENCE_MAX_LENGTH
  4. 使用utils/load_data.py生成label2id.txt文件,将其中的内容填到data.py的TAG_MAP中。注意:序号必须从1开始
  5. 修改data.py中的len_tag_dict,值等于TAG_MAP的最大值
  6. 修改data.py中build_dict(corpus, num_words = 6000)的num_words,为词表长度,词表按词频生成,超过num_words的将被忽略
  7. 根据需要修改model.py模型结构
  8. 修改config.py的超参数
  9. 训练前debug看下main.py的train_dl,train_ds对不对
  10. 训练,注意,必须传入验证集数据,如果没有验证集,就把测试集传入

Model

模型的结构大致如下,这里 BiLSTM 层的输入为字向量。Bi-LSTM 对每个字进行编码,然后经过 softmax 后,每个词对应一个长度为 len(tags) 的向量,在不使用 CRF 的方法中,就取这个向量中最大的值的位置作为预测的 tag 了,可能会不符合BIO标签的规则。

这里每个词的对应的向量作为 CRF 的输入,CRF 会最大化整个序列的概率,学习BIO的规则,保证输出格式是合法的。

在 PyTorch 中没有 CRF 层,这里使用了 AllenNLP 中的 CRF 实现

Config

在条件随机场中存在一个状态转移矩阵,在这里此状态转移矩阵就包含的是不同 tag 之间转移的概率。但并不是任何状态之间都能进行转移的,比如 B-PER 就不可能转移到 I-LOC 上。condtraints 就用来指明那些状态之间可以转移,这样将极大地减少可能性,在训练和解码过程中,能够大幅提升速度。请务必指定此参数,其创建方法见 data.py

Train

runfile('/Volumes/Riesling/TRAIN/Torch-base/src/BiLSTM_CRF/main.py', wdir='/Volumes/Riesling/TRAIN/Torch-base/src/BiLSTM_CRF')
-----------------------------------------------------------------------------------------------------------
               Layer (type)                                    Input Shape         Param #     Tr. Param #
===========================================================================================================
                Embedding-1                                      [100, 32]         180,300         180,300
                     LSTM-2     [100, 32, 300], [2, 32, 256], [2, 32, 256]       1,142,784       1,142,784
                     LSTM-3     [100, 32, 512], [2, 32, 128], [2, 32, 128]         657,408         657,408
                  Dropout-4                                 [100, 32, 256]               0               0
                   Linear-5                                 [32, 100, 256]           7,453           7,453
   ConditionalRandomField-6            [32, 100, 29], [32, 100], [32, 100]           1,860             899
===========================================================================================================
Total params: 1,989,805
Trainable params: 1,988,844
Non-trainable params: 961
-----------------------------------------------------------------------------------------------------------
training on  cpu
epoch [1]: 100%|██████████| 29/29 [00:26<00:00,  1.09it/s, loss=42.7]
2021-12-17 14:52:37,207 - epoch 1 - loss: 42.6906 acc: 0.2409 - test_acc: 0.1804
epoch [2]: 100%|██████████| 29/29 [00:28<00:00,  1.02it/s, loss=17.6]
2021-12-17 14:53:19,099 - epoch 2 - loss: 17.5649 acc: 0.6874 - test_acc: 0.6554
epoch [3]: 100%|██████████| 29/29 [00:32<00:00,  1.10s/it, loss=10.7]
2021-12-17 14:54:01,811 - epoch 3 - loss: 10.6861 acc: 0.7702 - test_acc: 0.6908
epoch [4]: 100%|██████████| 29/29 [00:31<00:00,  1.07s/it, loss=7.76]
2021-12-17 14:54:43,429 - epoch 4 - loss: 7.7551 acc: 0.8336 - test_acc: 0.7633
epoch [5]: 100%|██████████| 29/29 [00:29<00:00,  1.03s/it, loss=5.89]
2021-12-17 14:55:23,635 - epoch 5 - loss: 5.8919 acc: 0.8689 - test_acc: 0.7907
epoch [6]: 100%|██████████| 29/29 [00:29<00:00,  1.00s/it, loss=4.68]
2021-12-17 14:56:01,725 - epoch 6 - loss: 4.6774 acc: 0.8798 - test_acc: 0.7858
epoch [7]: 100%|██████████| 29/29 [00:38<00:00,  1.32s/it, loss=4.03]
2021-12-17 14:56:53,304 - epoch 7 - loss: 4.0329 acc: 0.9052 - test_acc: 0.7858
epoch [8]: 100%|██████████| 29/29 [00:35<00:00,  1.21s/it, loss=3.34]
2021-12-17 14:57:41,694 - epoch 8 - loss: 3.3428 acc: 0.9118 - test_acc: 0.8180
epoch [9]: 100%|██████████| 29/29 [00:38<00:00,  1.32s/it, loss=2.98]
2021-12-17 14:58:29,565 - epoch 9 - loss: 2.9814 acc: 0.9217 - test_acc: 0.7762
epoch [10]: 100%|██████████| 29/29 [00:36<00:00,  1.26s/it, loss=2.53]
2021-12-17 14:59:15,809 - epoch 10 - loss: 2.5263 acc: 0.9298 - test_acc: 0.7971

Evaluate

metric_test = evaluate(model, test_dl, device, verbose = True)
print(metric_test.report())

测试集上的表现:

predicting training set: 100%|██████████| 29/29 [00:08<00:00,  3.46it/s]
Train set
            ANATOMY     SIGN        QUANTITY    ORGAN       TEXTURE     DISEASE     DENSITY     BOUNDARY    MARGIN      DIAMETER    SHAPE       TREATMENT   LUNGFIELD   NATURE      
precision   0.92        0.93        0.97        0.86        0.93        0.95        0.90        1.00        1.00        0.95        0.88        0.91        1.00        1.00        
recall      0.92        0.93        0.94        0.79        0.88        0.93        0.90        1.00        1.00        0.95        0.77        0.89        0.92        1.00        
f1          0.92        0.93        0.95        0.82        0.90        0.94        0.90        1.00        1.00        0.95        0.82        0.90        0.96        1.00        
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
precision   0.93
recall      0.92
f1          0.93

predicting test set: 100%|██████████| 5/5 [00:01<00:00,  3.85it/s]
Test set
            ANATOMY     SIGN        QUANTITY    ORGAN       TEXTURE     DISEASE     DENSITY     BOUNDARY    MARGIN      DIAMETER    SHAPE       TREATMENT   LUNGFIELD   NATURE      
precision   0.83        0.72        0.87        0.69        0.86        0.72        1.00        0.75        0.83        1.00        0.71        0.56        0.83        1.00        
recall      0.81        0.76        0.85        0.64        1.00        0.61        1.00        1.00        0.83        1.00        0.83        0.38        1.00        0.86        
f1          0.82        0.74        0.86        0.67        0.92        0.66        1.00        0.86        0.83        1.00        0.77        0.45        0.91        0.92        
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
precision   0.79
recall      0.78
f1          0.79

Predict

model = BiLSTM_CRF(Config())
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.load_state_dict(torch.load(path.weights_path + path.saved_model_name, map_location = torch.device(device)))
sentence = '右横隔见数枚肿大淋巴结较前退缩,现显示不清(4:9)。左肺下叶后基底段见不规则结节灶较前稍缩小,现最大截面约1.1cm*0.9cm(7.15),边界尚清;右肺中下叶见散在数枚直径小于0.5cm的模糊小结节影与前大致相仿(7:18、30、36);双肺尖见少许斑片、条索影较前无明显变化,余肺野未见明显实质性病变。'
tags = predict_sentence_tags(model, sentence, dct, device)
print(get_entity(sentence, tags))

预测结果:

{
    'ANATOMY': {'9mm', '右肺中下叶', '左肺下叶后基底段', '右横隔', '双肺尖'}, 
    'SIGN': {'明显实质性病变', '肿大淋巴结较前退缩', '斑片、条索影较前无明显变化', '较前稍缩小', '不规则结节灶', '数枚', '小结节影'}, 
    'DIAMETER': {'1.1*'}, 
    'BOUNDARY': {'尚清'}, 
    'QUANTITY': {'少许', '未见'}
}
Kurumi ChatBot

KurumiChatBot Just another Telegram AI chat bot written in Python using Pyrogram. A public running instance can be found on telegram as @TokisakiChatB

Yoga Pranata 3 Jun 28, 2022
BERT Attention Analysis

BERT Attention Analysis This repository contains code for What Does BERT Look At? An Analysis of BERT's Attention. It includes code for getting attent

Kevin Clark 401 Dec 11, 2022
A list of NLP(Natural Language Processing) tutorials

NLP Tutorial A list of NLP(Natural Language Processing) tutorials built on PyTorch. Table of Contents A step-by-step tutorial on how to implement and

Allen Lee 1.3k Dec 25, 2022
Wake: Context-Sensitive Automatic Keyword Extraction Using Word2vec

Wake Wake: Context-Sensitive Automatic Keyword Extraction Using Word2vec Abstract استخراج خودکار کلمات کلیدی متون کوتاه فارسی با استفاده از word2vec ب

Omid Hajipoor 1 Dec 17, 2021
This is a general repo that helps you develop fast/effective NLP classifiers using Huggingface

NLP Classifier Introduction This project trains a bert model on any NLP classifcation model. And uses the model in make predictions on new data using

Abdullah Tarek 3 Mar 11, 2022
2021 AI CUP Competition on Traditional Chinese Scene Text Recognition - Intermediate Contest

繁體中文場景文字辨識 程式碼說明 組別:這就是我 成員:蔣明憲 唐碩謙 黃玥菱 林冠霆 蕭靖騰 目錄 環境套件 安裝方式 資料夾布局 前處理-製作偵測訓練註解檔 前處理-製作分類訓練樣本 part.py : 從 json 裁切出分類訓練樣本 Class.py : 將切出來的樣本按照文字分類到各資料夾

HuanyueTW 3 Jan 14, 2022
UniSpeech - Large Scale Self-Supervised Learning for Speech

UniSpeech The family of UniSpeech: WavLM (arXiv): WavLM: Large-Scale Self-Supervised Pre-training for Full Stack Speech Processing UniSpeech (ICML 202

Microsoft 281 Dec 15, 2022
Yuqing Xie 2 Feb 17, 2022
CVSS: A Massively Multilingual Speech-to-Speech Translation Corpus

CVSS: A Massively Multilingual Speech-to-Speech Translation Corpus CVSS is a massively multilingual-to-English speech-to-speech translation corpus, co

Google Research Datasets 118 Jan 06, 2023
基于pytorch+bert的中文事件抽取

pytorch_bert_event_extraction 基于pytorch+bert的中文事件抽取,主要思想是QA(问答)。 要预先下载好chinese-roberta-wwm-ext模型,并在运行时指定模型的位置。

西西嘛呦 31 Nov 30, 2022
An A-SOUL Text Generator Based on CPM-Distill.

ASOUL-Generator-Backend 本项目为 https://asoul.infedg.xyz/ 的后端。 模型为基于 CPM-Distill 的 transformers 转化版本 CPM-Generate-distill 训练而成。

infinityedge 46 Dec 11, 2022
Speech to text streamlit app

Speech to text Streamlit-app! 👄 This speech to text recognition is powered by t

Charly Wargnier 9 Jan 01, 2023
:house_with_garden: Fast & easy transfer learning for NLP. Harvesting language models for the industry. Focus on Question Answering.

(Framework for Adapting Representation Models) What is it? FARM makes Transfer Learning with BERT & Co simple, fast and enterprise-ready. It's built u

deepset 1.6k Dec 27, 2022
Higher quality textures for the Metal Gear Solid series.

Metal Gear Solid: HD Textures Higher quality textures for the Metal Gear Solid series. The goal is to maximize the quality of assets that the engine w

Samantha 6 Dec 06, 2022
Pytorch-version BERT-flow: One can apply BERT-flow to any PLM within Pytorch framework.

Pytorch-version BERT-flow: One can apply BERT-flow to any PLM within Pytorch framework.

Ubiquitous Knowledge Processing Lab 59 Dec 01, 2022
Smart discord chatbot integrated with Dialogflow

academic-NLP-chatbot Smart discord chatbot integrated with Dialogflow to interact with students naturally and manage different classes in a school. De

Tom Huynh 5 Oct 24, 2022
Implementation of some unbalanced loss like focal_loss, dice_loss, DSC Loss, GHM Loss et.al

Implementation of some unbalanced loss for NLP task like focal_loss, dice_loss, DSC Loss, GHM Loss et.al Summary Here is a loss implementation reposit

121 Jan 01, 2023
Code for ACL 2020 paper "Rigid Formats Controlled Text Generation"

SongNet SongNet: SongCi + Song (Lyrics) + Sonnet + etc. @inproceedings{li-etal-2020-rigid, title = "Rigid Formats Controlled Text Generation",

Piji Li 212 Dec 17, 2022
Khandakar Muhtasim Ferdous Ruhan 1 Dec 30, 2021