BinTuner is a cost-efficient auto-tuning framework, which can deliver a near-optimal binary code that reveals much more differences than -Ox settings.

Related tags

Data AnalysisDev
Overview

BinTuner

BinTuner is a cost-efficient auto-tuning framework, which can deliver a near-optimal binary code that reveals much more differences than -Ox settings. it also can assist the binary code analysis research in generating more diversified datasets for training and testing. The BinTuner framework is based on OpenTuner, thanks to all contributors for their contributions.

The architecture of BinTuner:

image

The core on the server-side is a metaheuristic search engine (e.g., the genetic algorithm), which directs iterative compilation towards maximizing the effect of binary code differences.

The client-side runs different compilers (GCC, LLVM ...) and the calculation of the fitness function.

Both sides communicate valid optimization options, fitness function scores, and compiled binaries to each other, and these data are stored in a database for future exploration. When BinTuner reaches a termination condition, we select the iterations showing the highest fitness function score and output the corresponding binary code as the final outcomes.

System dependencies

A list of system dependencies can be found in packages-deps which are primarily python 2.6+ (not 3.x) and sqlite3.

On Ubuntu/Debian there can be installed with:

sudo apt-get update
sudo apt-get upgrade
sudo apt-get install `cat packages-deps | tr '\n' ' '`

Installation

Running it out of a git checkout, a list of python dependencies can be found in requirements.txt these can be installed system-wide with pip.

sudo apt-get install python-pip
sudo pip install -r requirements.txt

If you encounter an error message like this:

Could not find a version that satisfies the requirement fn>=0.2.12 (from -r requirements.txt (line 2)) (from versions:)
No matching distribution found for fn>=0.2.12 (from -r requirements.tet (line 2))

Please try again or install each manually

pip install fn>=0.2.12
...
pip install numpy>=1.8.0
...

If you encounter an error message like this:

ImportError: No module named lzma

Please install lzma

sudo apt-get install python-lzma

If you encounter an error message like this:

assert compile_result['returncode'] == 0
AssertionError

Please confirm how to use the compiler in your terminal, such as GCC or gcc-10.2.0 it needs to be modified in your .Py file

If you encounter an error message like this:

sqlalchemy.exc.OperationalError: (pysqlite2.dbapi2.OperationalError) database is locked [SQL: u'INSERT INTO tuning_run (uuid, program_version_id, machine_class_id, input_class_id, name, args, objective, state, start_date, end_date, final_config_id) VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)'] [parameters: ('b3311f3609ff4ce9aa40c0f9bb291d26', 1, None, None, 'unnamed', 
   
   
    
    , 
    
    
     
     , 'QUEUED', '2021-xx-xx 03:42:04.145932', None, None)] (Background on this error at: http://sqlalche.me/e/e3q8)

    
    
   
   

Just delete the DB file saved before (PATH:/examples/gccflags/opentuner.db/Your PC's Name.db).

Install Compiler

GCC

Check to see if the compiler is installed

e.g.

gcc -v  shows that
gcc version 7.5.0 (Ubuntu 7.5.0-3ubuntu1~18.04)

Please note that there have different optimization options in different versions of compilers.

If you use the optimization options that are not included in this version of the compiler, the program can not run and report an error.

It is strongly recommended to confirm that the optimization options are in the official instructions of GCC or LLVM before using them.

e.g. GCC version 10.2.0.

You can also use the command to display all options in terminal

gcc --help=optimizers


The following options control optimizations:
  -O
   
   
    
                      Set optimization level to 
    
    
     
     .
  -Ofast                      Optimize for speed disregarding exact standards
                              compliance.
  -Og                         Optimize for debugging experience rather than
                              speed or size.
  -Os                         Optimize for space rather than speed.
  -faggressive-loop-optimizations Aggressively optimize loops using language
                              constraints.
  -falign-functions           Align the start of functions.
  -falign-jumps               Align labels which are only reached by jumping.
  -falign-labels              Align all labels.
  -falign-loops               Align the start of loops.
  ...


    
    
   
   

LLVM

clang -v

Check how to install LLVM here

https://apt.llvm.org/

https://clang.llvm.org/get_started.html

Checking Installation

Enter the following command in terminal to test:

[email protected]:~/BinTuner/examples/gccflags$ python main.py 2

You will see some info like this:

Program Start
************************ Z3 ************************
5- Result--> Unavailable
3- Result--> Available
[ Z3 return Results = first second True four False]
[ Changed "shrink-wrap" value ]
...
-------------------------------------------------

--- BinTuner ---
--- Command lines and compiler optimization options ---:
gcc benchmarks/bzip2.c -lm -o ./tmp0.bin -O3 -fauto-inc-dec -fbranch-count-reg -fno-combine-stack-adjustments 
-fcompare-elim -fcprop-registers -fno-dce -fdefer-pop -fdelayed-branch -fno-dse -fforward-propagate -fguess-branch-probability 
-fno-if-conversion2 -fno-if-conversion -finline-functions-called-once -fipa-pure-const -fno-ipa-profile -fipa-reference 
-fno-merge-constants -fmove-loop-invariants -freorder-blocks -fshrink-wrap -fsplit-wide-types -fno-tree-bit-ccp -fno-tree-ccp 
-ftree-ch -fno-tree-coalesce-vars -ftree-copy-prop -ftree-dce -fno-tree-dse -ftree-forwprop -fno-tree-fre -ftree-sink -fno-tree-slsr 
-fno-tree-sra -ftree-pta -ftree-ter -fno-unit-at-a-time -fno-omit-frame-pointer -ftree-phiprop -fno-tree-dominator-opts -fno-ssa-backprop 
-fno-ssa-phiopt -fshrink-wrap-separate -fthread-jumps -falign-functions -fno-align-labels -fno-align-labels -falign-loops -fno-caller-saves 
-fno-crossjumping -fcse-follow-jumps -fno-cse-skip-blocks -fno-delete-null-pointer-checks -fno-devirtualize -fdevirtualize-speculatively 
-fexpensive-optimizations -fno-gcse -fno-gcse-lm -fno-hoist-adjacent-loads -finline-small-functions -fno-indirect-inlining -fipa-cp 
-fipa-sra -fipa-icf -fno-isolate-erroneous-paths-dereference -fno-lra-remat -foptimize-sibling-calls -foptimize-strlen 
-fpartial-inlining -fno-peephole2 -fno-reorder-blocks-and-partition -fno-reorder-functions -frerun-cse-after-loop -fno-sched-interblock 
-fno-sched-spec -fno-schedule-insns -fno-strict-aliasing -fstrict-overflow -fno-tree-builtin-call-dce -fno-tree-switch-conversion 
-ftree-tail-merge -ftree-pre -fno-tree-vrp -fno-ipa-ra -freorder-blocks -fno-schedule-insns2 -fcode-hoisting -fstore-merging 
-freorder-blocks-algorithm=simple -fipa-bit-cp -fipa-vrp -fno-inline-functions -fno-unswitch-loops -fpredictive-commoning 
-fno-gcse-after-reload -fno-tree-loop-vectorize -ftree-loop-distribute-patterns -fno-tree-slp-vectorize -fvect-cost-model 
-ftree-partial-pre -fpeel-loops -fipa-cp-clone -fno-split-paths -ftree-vectorize --param early-inlining-insns=526 
--param gcse-cost-distance-ratio=12 --param iv-max-considered-uses=762
 -O3
--NCD:0.807842390787
---Test----
--Max:0
--Current:0
--Count:0
...

Results

The DB file saved in the PATH:/examples/gccflags/opentuner.db/Your PC's Name.db

Each sequence of compilation flags and the corresponding ncd value are saved in the db file.

Set up how many times to run

Please refer to the settings in main.py There are two strategies The default setting runs 100 times, if you want to modify it according to your own wishes this is ok. For example, by monitoring the change of NCD value in 100 times, if the cumulative change of 100 times increase is less than 5%, let's terminte it.

First-order formulas

We manually generate first-order formulas after understanding the compiler manual. The knowledge we learned is easy to move between the same compiler series---we only need to consider the different optimization options introduced by the new version.

We use Z3 Prover to analyze all generated optimization option sequences for conflicts and make changes to conflicting options for greater compiling success.

For more details, please refer Z3Prover.

Setting for Genetic Algorithm

The genetic algorithm is a metaheuristic inspired by the process of natural selection that belongs to the larger class of evolutionary algorithms. Genetic algorithms are commonly used to generate high-quality solutions to optimization and search problems by relying on biologically inspired operators such as mutation, crossover, and selection.

We tune four parameters for the genetic algorithm, including mutation_rate, crossover_rate, must_mutate_count, crossover_strength.

For more details, please refer globalGA.

Future Work

We are studying constructing custom optimization sequences that present the best tradeoffs between multiple objective functions (e.g., execution speed & NCD). To further reduce the total iterations of BinTuner, an exciting direction is to develop machine learning methods that correlate C language features with particular optimization options. In this way, we can predict program-specific optimization strategies that achieve the expected binary code differences.

Owner
BinTuner
BinTuner is a cost-efficient auto-tuning framework, which can deliver a near-optimal binary code that reveals much more differences than -Ox settings.
BinTuner
Business Intelligence (BI) in Python, OLAP

Open Mining Business Intelligence (BI) Application Server written in Python Requirements Python 2.7 (Backend) Lua 5.2 or LuaJIT 5.1 (OML backend) Mong

Open Mining 1.2k Dec 27, 2022
Validation and inference over LinkML instance data using souffle

Translates LinkML schemas into Datalog programs and executes them using Souffle, enabling advanced validation and inference over instance data

Linked data Modeling Language 7 Aug 07, 2022
Autopsy Module to analyze Registry Hives based on bookmarks provided by EricZimmerman for his tool RegistryExplorer

Autopsy Module to analyze Registry Hives based on bookmarks provided by EricZimmerman for his tool RegistryExplorer

Mohammed Hassan 13 Mar 31, 2022
A tool to compare differences between dataframes and create a differences report in Excel

similarpanda A module to check for differences between pandas Dataframes, and generate a report in Excel format. This is helpful in a workplace settin

Andre Pretorius 9 Sep 15, 2022
Data analysis and visualisation projects from a range of individual projects and applications

Python-Data-Analysis-and-Visualisation-Projects Data analysis and visualisation projects from a range of individual projects and applications. Python

Tom Ritman-Meer 1 Jan 25, 2022
A project consists in a set of assignements corresponding to a BI process: data integration, construction of an OLAP cube, qurying of a OPLAP cube and reporting.

TennisBusinessIntelligenceProject - A project consists in a set of assignements corresponding to a BI process: data integration, construction of an OLAP cube, qurying of a OPLAP cube and reporting.

carlo paladino 1 Jan 02, 2022
Programmatically access the physical and chemical properties of elements in modern periodic table.

API to fetch elements of the periodic table in JSON format. Uses Pandas for dumping .csv data to .json and Flask for API Integration. Deployed on "pyt

the techno hack 3 Oct 23, 2022
An experimental project I'm undertaking for the sole purpose of increasing my Python knowledge

5ePy is an experimental project I'm undertaking for the sole purpose of increasing my Python knowledge. #Goals Goal: Create a working, albeit lightwei

Hayden Covington 1 Nov 24, 2021
Snakemake workflow for converting FASTQ files to self-contained CRAM files with maximum lossless compression.

Snakemake workflow: name A Snakemake workflow for description Usage The usage of this workflow is described in the Snakemake Workflow Catalog. If

Algorithms for reproducible bioinformatics (Koesterlab) 1 Dec 16, 2021
PipeChain is a utility library for creating functional pipelines.

PipeChain Motivation PipeChain is a utility library for creating functional pipelines. Let's start with a motivating example. We have a list of Austra

Michael Milton 2 Aug 07, 2022
Analytical view of olist e-commerce in Brazil

Analysis of E-Commerce Public Dataset by Olist The objective of this project is to propose an analytical view of olist e-commerce in Brazil. For this

Gurpreet Singh 1 Jan 11, 2022
ToeholdTools is a Python package and desktop app designed to facilitate analyzing and designing toehold switches, created as part of the 2021 iGEM competition.

ToeholdTools Category Status Repository Package Build Quality A library for the analysis of toehold switch riboregulators created by the iGEM team Cit

0 Dec 01, 2021
Pyspark Spotify ETL

This is my first Data Engineering project, it extracts data from the user's recently played tracks using Spotify's API, transforms data and then loads it into Postgresql using SQLAlchemy engine. Data

16 Jun 09, 2022
Used for data processing in machine learning, and help us to construct ML model more easily from scratch

Used for data processing in machine learning, and help us to construct ML model more easily from scratch. Can be used in linear model, logistic regression model, and decision tree.

ShawnWang 0 Jul 05, 2022
An ETL Pipeline of a large data set from a fictitious music streaming service named Sparkify.

An ETL Pipeline of a large data set from a fictitious music streaming service named Sparkify. The ETL process flows from AWS's S3 into staging tables in AWS Redshift.

1 Feb 11, 2022
A real data analysis and modeling project - restaurant inspections

A real data analysis and modeling project - restaurant inspections Jafar Pourbemany 9/27/2021 This project represents data analysis and modeling of re

Jafar Pourbemany 2 Aug 21, 2022
Candlestick Pattern Recognition with Python and TA-Lib

Candlestick-Pattern-Recognition-with-Python-and-TA-Lib Goal Look at the S&P500 to try and get a better understanding of these candlestick patterns and

Ganesh Jainarain 11 Oct 07, 2022
A collection of learning outcomes data analysis using Python and SQL, from DQLab.

Data Analyst with PYTHON Data Analyst berperan dalam menghasilkan analisa data serta mempresentasikan insight untuk membantu proses pengambilan keputu

6 Oct 11, 2022
Single-Cell Analysis in Python. Scales to >1M cells.

Scanpy – Single-Cell Analysis in Python Scanpy is a scalable toolkit for analyzing single-cell gene expression data built jointly with anndata. It inc

Theis Lab 1.4k Jan 05, 2023
Stock Analysis dashboard Using Streamlit and Python

StDashApp Stock Analysis Dashboard Using Streamlit and Python If you found the content useful and want to support my work, you can buy me a coffee! Th

StreamAlpha 27 Dec 09, 2022