An Implementation of SiameseRPN with Feature Pyramid Networks

Overview

SiameseRPN with FPN

This project is mainly based on HelloRicky123/Siamese-RPN. What I've done is just add a Feature Pyramid Network method to the original AlexNet structures.

For more details about siameseRPN please refer to the paper : High Performance Visual Tracking with Siamese Region Proposal Network by Bo Li, Junjie Yan,Wei Wu, Zheng Zhu, Xiaolin Hu.

For more details about Feature Pyramid Network please refer to the paper: Feature Pyramid Network for Object Detection by Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie.

Networks

  • Siamese Region Proposal Networks

    image-20210909160951628

  • Feature Pyramid Networks

    image-20210909161336484

  • SimaeseRPN+FPN

    • Template Branch

      0001

    • Detection Branch

      0001

Results

This project can get 0.618 AUC on OTB100, which also achieves overall 1.3% progress than the performance of baseline Siamese-RPN. Additionally, based on the ablation study results, it also shows that it can achieve robust performance different operating systems and GPUs.

Data preparation

I only use pre-trained models to finish my experiments,so here I would post the testing dataset OTB100 I get from http://cvlab.hanyang.ac.kr/tracker_benchmark/

If you don't want to download through the website above, you can just download: https://pan.baidu.com/s/1vWIn8ovCGKmlgIdHdt_MkA key: p8u4

For more details about OTB100 please refer to the paper: Object Tracking Benchmark by Yi Wu, Jongwoo Lim, Ming-Hsuan Yang.

Train phase

I didn't do any training but I still keep the baseline training method in my project. So if you have VID dataset or youtube-bb dataset, I would just post the steps of training here

Create dataset:

python bin/create_dataset_ytbid.py --vid-dir /PATH/TO/ILSVRC2015 --ytb-dir /PATH/TO/YT-BB --output-dir /PATH/TO/SAVE_DATA --num_threads 6

Create lmdb:

python bin/create_lmdb.py --data-dir /PATH/TO/SAVE_DATA --output-dir /PATH/TO/RESULT.lmdb --num_threads 12

Train:

python bin/train_siamrpn.py --data_dir /PATH/TO/SAVE_DATA

Test phase

If want to test the tracker, please first change the project path:

sys.path.append('[your_project_path]')

And then choose the combinations of different layers I putted in the net/network.py

then input your model path and dataset path to run:

python bin/test_OTB.py -ms [your_model_path] -v tb100 -d [your_dataset_path]

Environment

I've exported my anaconda and pip environment into /env/conda_env.yaml and /env/pip_requirements.txt

if you want to use it, just run the command below accordingly

for anaconda:

conda create -n [your_env_name] -f conda_env.yaml

for pip:

pip install -r requirements.txt

Model Download

Model which the baseline uses: https://pan.baidu.com/s/1vSvTqxaFwgmZdS00U3YIzQ keyword: v91k

Model after training 50 epoch: https://pan.baidu.com/s/1m9ISra0B04jcmjW1n73fxg keyword: 0s03

Experimental Environment

(1)

DELL-Precision-7530

OS: Ubuntu 18.04 LTS CPU: Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz

Memory: 2*8G DDR4 2666MHZ

GPU: Nvidia Quadro P1000

(2)

HP OMEN

OS: Windows 10 Home Edition

CPU: Intel(R) Core(TM) i7-9750H CPU @ 2.6GHz

Memory: 2*8G DDR4 2666MHZ

GPU: Nvidia Geforce RTX2060

Optimization

On Ubuntu and Quadro P1000

  • AUCs with model siamrpn_38.pth
Layers Results(AUC)
baseline 0.610
2+5 0.618
2+3+5 0.607
2+3+4+5 0.611
  • AUCs with model siamrpn_50.pth
Layers Results(AUC)
baseline 0.600
2+5 0.605
2+3+5 0.594
2+3+4+5 0.605

On Windows 10 and Nvidia Geforce RTX2060

  • AUCs with model siamrpn_38.pth
layers Results(AUC)
baseline 0.610
2+5 0.617
2+3+5 0.607
2+3+4+5 0.612
  • AUCs with model siamrpn_50.pth
Layers Results(AUC)
baseline 0.597
2+5 0.606
2+3+5 0.597
2+3+4+5 0.605

Reference

[1] B. Li, J. Yan, W. Wu, Z. Zhu, X. Hu, High Performance Visual Tracking with Siamese Region Proposal Network, inProceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018, pages 8971-8980.

[2] T. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, S. Belongie, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pages 2117-2125.

[3] Y. Wu, J. Lim, M. Yang, "Object Tracking Benchmark", in IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, pages 1834-1848.

A Simple and Versatile Framework for Object Detection and Instance Recognition

SimpleDet - A Simple and Versatile Framework for Object Detection and Instance Recognition Major Features FP16 training for memory saving and up to 2.

TuSimple 3k Dec 12, 2022
Code for "The Intrinsic Dimension of Images and Its Impact on Learning" - ICLR 2021 Spotlight

dimensions Estimating the instrinsic dimensionality of image datasets Code for: The Intrinsic Dimensionaity of Images and Its Impact On Learning - Phi

Phil Pope 41 Dec 10, 2022
This repository contains project created during the Data Challenge module at London School of Hygiene & Tropical Medicine

LSHTM_RCS This repository contains project created during the Data Challenge module at London School of Hygiene & Tropical Medicine (LSHTM) in collabo

Lukas Kopecky 3 Jan 30, 2022
Background Matting: The World is Your Green Screen

Background Matting: The World is Your Green Screen By Soumyadip Sengupta, Vivek Jayaram, Brian Curless, Steve Seitz, and Ira Kemelmacher-Shlizerman Th

Soumyadip Sengupta 4.6k Jan 04, 2023
Paddle implementation for "Cross-Lingual Word Embedding Refinement by ℓ1 Norm Optimisation" (NAACL 2021)

L1-Refinement Paddle implementation for "Cross-Lingual Word Embedding Refinement by ℓ1 Norm Optimisation" (NAACL 2021) 🙈 A more detailed readme is co

Lincedo Lab 4 Jun 09, 2021
Multi-Anchor Active Domain Adaptation for Semantic Segmentation (ICCV 2021 Oral)

Multi-Anchor Active Domain Adaptation for Semantic Segmentation Munan Ning*, Donghuan Lu*, Dong Wei†, Cheng Bian, Chenglang Yuan, Shuang Yu, Kai Ma, Y

Munan Ning 36 Dec 07, 2022
Machine Learning Toolkit for Kubernetes

Kubeflow the cloud-native platform for machine learning operations - pipelines, training and deployment. Documentation Please refer to the official do

Kubeflow 12.1k Jan 03, 2023
CV backbones including GhostNet, TinyNet and TNT, developed by Huawei Noah's Ark Lab.

CV Backbones including GhostNet, TinyNet, TNT (Transformer in Transformer) developed by Huawei Noah's Ark Lab. GhostNet Code TinyNet Code TNT Code Pyr

HUAWEI Noah's Ark Lab 3k Jan 08, 2023
Customizable RecSys Simulator for OpenAI Gym

gym-recsys: Customizable RecSys Simulator for OpenAI Gym Installation | How to use | Examples | Citation This package describes an OpenAI Gym interfac

Xingdong Zuo 14 Dec 08, 2022
Repository of Vision Transformer with Deformable Attention

Vision Transformer with Deformable Attention This repository contains the code for the paper Vision Transformer with Deformable Attention [arXiv]. Int

410 Jan 03, 2023
ICCV2021 Oral SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks

Sign-Agnostic Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page This repository contains the implementation

63 Nov 18, 2022
Social Distancing Detector

Computer vision has opened up a lot of opportunities to explore into AI domain that were earlier highly limited. Here is an application of haarcascade classifier and OpenCV to develop a social distan

Ashish Pandey 2 Jul 18, 2022
Official code for "Mean Shift for Self-Supervised Learning"

MSF Official code for "Mean Shift for Self-Supervised Learning" Requirements Python = 3.7.6 PyTorch = 1.4 torchvision = 0.5.0 faiss-gpu = 1.6.1 In

UMBC Vision 44 Nov 21, 2022
FIRA: Fine-Grained Graph-Based Code Change Representation for Automated Commit Message Generation

FIRA is a learning-based commit message generation approach, which first represents code changes via fine-grained graphs and then learns to generate commit messages automatically.

Van 21 Dec 30, 2022
NAS-Bench-x11 and the Power of Learning Curves

NAS-Bench-x11 NAS-Bench-x11 and the Power of Learning Curves Shen Yan, Colin White, Yash Savani, Frank Hutter. NeurIPS 2021. Surrogate NAS benchmarks

AutoML-Freiburg-Hannover 13 Nov 18, 2022
Deep Learning Interviews book: Hundreds of fully solved job interview questions from a wide range of key topics in AI.

This book was written for you: an aspiring data scientist with a quantitative background, facing down the gauntlet of the interview process in an increasingly competitive field. For most of you, the

4.1k Dec 28, 2022
Pixel-wise segmentation on VOC2012 dataset using pytorch.

PiWiSe Pixel-wise segmentation on the VOC2012 dataset using pytorch. FCN SegNet PSPNet UNet RefineNet For a more complete implementation of segmentati

Bodo Kaiser 378 Dec 30, 2022
Preparation material for Dropbox interviews

Dropbox-Onsite-Interviews A guide for the Dropbox onsite interview! The Dropbox interview question bank is very small. The bank has been in a Chinese

386 Dec 31, 2022
Pytorch implementation for "Implicit Feature Alignment: Learn to Convert Text Recognizer to Text Spotter".

Implicit Feature Alignment: Learn to Convert Text Recognizer to Text Spotter This is a pytorch-based implementation for paper Implicit Feature Alignme

wangtianwei 61 Nov 12, 2022
🧠 A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation.', ECCV 2016

Deep CORAL A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation. B Sun, K Saenko, ECCV 2016' Deep CORAL can learn

Andy Hsu 200 Dec 25, 2022