Official implementation of "An Image is Worth 16x16 Words, What is a Video Worth?" (2021 paper)

Related tags

Deep LearningSTAM
Overview

An Image is Worth 16x16 Words, What is a Video Worth?

paper

Official PyTorch Implementation

Gilad Sharir, Asaf Noy, Lihi Zelnik-Manor
DAMO Academy, Alibaba Group

Abstract

Leading methods in the domain of action recognition try to distill information from both the spatial and temporal dimensions of an input video. Methods that reach State of the Art (SotA) accuracy, usually make use of 3D convolution layers as a way to abstract the temporal information from video frames. The use of such convolutions requires sampling short clips from the input video, where each clip is a collection of closely sampled frames. Since each short clip covers a small fraction of an input video, multiple clips are sampled at inference in order to cover the whole temporal length of the video. This leads to increased computational load and is impractical for real-world applications. We address the computational bottleneck by significantly reducing the number of frames required for inference. Our approach relies on a temporal transformer that applies global attention over video frames, and thus better exploits the salient information in each frame. Therefore our approach is very input efficient, and can achieve SotA results (on Kinetics dataset) with a fraction of the data (frames per video), computation and latency. Specifically on Kinetics-400, we reach 78.8 top-1 accuracy with ×30 less frames per video, and ×40 faster inference than the current leading method

Update 2/5/2021: Improved results

Due to improved training hyperparameters, and using KD training, we were able to improve STAM results on Kinetics400 (+ ~1.5%). We are releasing the pretrained weights of the improved models (see Pretrained Models below).

Main Article Results

STAM models accuracy and GPU throughput on Kinetics400, compared to X3D. All measurements were done on Nvidia V100 GPU, with mixed precision. All models are trained on input resolution of 224.

Models Top-1 Accuracy
(%)
Flops × views
(10^9)
# Input Frames Runtime
(Videos/sec)
X3D-M 76.0 6.2 × 30 480 1.3
X3D-L 77.5 24.8 × 30 480 0.46
X3D-XL 79.1 48.4 × 30 480 N/A
X3D-XXL 80.4 194 × 30 480 N/A
TimeSformer-L 80.7 2380 × 3 288 N/A
ViViT-L 81.3 3992 × 12 384 N/A
STAM-16 79.3 270 × 1 16 20.0
STAM-64 80.5 1080 × 1 64 4.8

Pretrained Models

We provide a collection of STAM models pre-trained on Kinetics400.

Model name checkpoint
STAM_16 link
STAM_64 link

Reproduce Article Scores

We provide code for reproducing the validation top-1 score of STAM models on Kinetics400. First, download pretrained models from the links above.

Then, run the infer.py script. For example, for stam_16 (input size 224) run:

python -m infer \
--val_dir=/path/to/kinetics_val_folder \
--model_path=/model/path/to/stam_16.pth \
--model_name=stam_16
--input_size=224

Citations

@misc{sharir2021image,
    title   = {An Image is Worth 16x16 Words, What is a Video Worth?}, 
    author  = {Gilad Sharir and Asaf Noy and Lihi Zelnik-Manor},
    year    = {2021},
    eprint  = {2103.13915},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}

Acknowledgements

We thank Tal Ridnik for discussions and comments.

Some components of this code implementation are adapted from the excellent repository of Ross Wightman. Check it out and give it a star while you are at it.

Official implementation of EfficientPose

EfficientPose This is the official implementation of EfficientPose. We based our work on the Keras EfficientDet implementation xuannianz/EfficientDet

2 May 17, 2022
Semantic Edge Detection with Diverse Deep Supervision

Semantic Edge Detection with Diverse Deep Supervision This repository contains the code for our IJCV paper: "Semantic Edge Detection with Diverse Deep

Yun Liu 12 Dec 31, 2022
Self-Supervised Document-to-Document Similarity Ranking via Contextualized Language Models and Hierarchical Inference

Self-Supervised Document Similarity Ranking (SDR) via Contextualized Language Models and Hierarchical Inference This repo is the implementation for SD

Microsoft 36 Nov 28, 2022
Blender Add-on that sets a Material's Base Color to one of Pantone's Colors of the Year

Blender PCOY (Pantone Color of the Year) MCMC (Mid-Century Modern Colors) HG71 (House & Garden Colors 1971) Blender Add-ons That Assign a Custom Color

Don Schnitzius 15 Nov 20, 2022
Official implementation of "Membership Inference Attacks Against Self-supervised Speech Models"

Introduction Official implementation of "Membership Inference Attacks Against Self-supervised Speech Models". In this work, we demonstrate that existi

Wei-Cheng Tseng 7 Nov 01, 2022
Pneumonia Detection using machine learning - with PyTorch

Pneumonia Detection Pneumonia Detection using machine learning. Training was done in colab: DEMO: Result (Confusion Matrix): Data I uploaded my datase

Wilhelm Berghammer 12 Jul 07, 2022
Implementations of LSTM: A Search Space Odyssey variants and their training results on the PTB dataset.

An LSTM Odyssey Code for training variants of "LSTM: A Search Space Odyssey" on Fomoro. Check out the blog post. Training Install TensorFlow. Clone th

Fomoro AI 95 Apr 13, 2022
Regression Metrics Calculation Made easy for tensorflow2 and scikit-learn

Regression Metrics Installation To install the package from the PyPi repository you can execute the following command: pip install regressionmetrics I

Ashish Patel 11 Dec 16, 2022
Implementation supporting the ICCV 2017 paper "GANs for Biological Image Synthesis"

GANs for Biological Image Synthesis This codes implements the ICCV-2017 paper "GANs for Biological Image Synthesis". The paper and its supplementary m

Anton Osokin 95 Nov 25, 2022
Learning multiple gaits of quadruped robot using hierarchical reinforcement learning

Learning multiple gaits of quadruped robot using hierarchical reinforcement learning We propose a method to learn multiple gaits of quadruped robot us

Yunho Kim 17 Dec 11, 2022
A PyTorch implementation of "TokenLearner: What Can 8 Learned Tokens Do for Images and Videos?"

TokenLearner: What Can 8 Learned Tokens Do for Images and Videos? Source: Improving Vision Transformer Efficiency and Accuracy by Learning to Tokenize

Caiyong Wang 14 Sep 20, 2022
A short and easy PyTorch implementation of E(n) Equivariant Graph Neural Networks

Simple implementation of Equivariant GNN A short implementation of E(n) Equivariant Graph Neural Networks for HOMO energy prediction. Just 50 lines of

Arsenii Senya Ashukha 97 Dec 23, 2022
TensorFlow Metal Backend on Apple Silicon Experiments (just for fun)

tf-metal-experiments TensorFlow Metal Backend on Apple Silicon Experiments (just for fun) Setup This is tested on M1 series Apple Silicon SOC only. Te

Timothy Liu 161 Jan 03, 2023
A Python 3 package for state-of-the-art statistical dimension reduction methods

direpack: a Python 3 library for state-of-the-art statistical dimension reduction techniques This package delivers a scikit-learn compatible Python 3

Sven Serneels 32 Dec 14, 2022
PyTorch implementation of our paper: Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition

Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition, arxiv This is a PyTorch implementation of our paper. 1. Re

DamoCV 11 Nov 19, 2022
Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database.

MIMIC-III Benchmarks Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database. Currently, the benchmark data

Chengxi Zang 6 Jan 02, 2023
Simple converter for deploying Stable-Baselines3 model to TFLite and/or Coral

Running SB3 developed agents on TFLite or Coral Introduction I've been using Stable-Baselines3 to train agents against some custom Gyms, some of which

Gary Briggs 16 Oct 11, 2022
Official Pytorch implementation for 2021 ICCV paper "Learning Motion Priors for 4D Human Body Capture in 3D Scenes" and trained models / data

Learning Motion Priors for 4D Human Body Capture in 3D Scenes (LEMO) Official Pytorch implementation for 2021 ICCV (oral) paper "Learning Motion Prior

165 Dec 19, 2022
This is a JAX implementation of Neural Radiance Fields for learning purposes.

learn-nerf This is a JAX implementation of Neural Radiance Fields for learning purposes. I've been curious about NeRF and its follow-up work for a whi

Alex Nichol 62 Dec 20, 2022
Improving Transferability of Representations via Augmentation-Aware Self-Supervision

Improving Transferability of Representations via Augmentation-Aware Self-Supervision Accepted to NeurIPS 2021 TL;DR: Learning augmentation-aware infor

hankook 38 Sep 16, 2022