(Arxiv 2021) NeRF--: Neural Radiance Fields Without Known Camera Parameters

Overview

NeRF--: Neural Radiance Fields Without Known Camera Parameters

Project Page | Arxiv | Colab Notebook | Data

Zirui Wang¹, Shangzhe Wu², Weidi Xie², Min Chen³, Victor Adrian Prisacariu¹.

¹Active Vision Lab + ²Visual Geometry Group + ³e-Research Centre, University of Oxford.

Overview

We provide 3 training targets in this repository, under the tasks directory:

  1. task/nerfmm/train.py: This is our main training script for the NeRF-LLFF dataset, which estimates camera poses, focal lenghts and a NeRF jointly and monitors the absolute trajectory error (ATE) between our estimation of camera parameters and COLMAP estimation during training. This target can also start training from a COLMAP initialisation and refine the COLMAP camera parameters.
  2. task/refine_nerfmm/train.py: This is the training script that refines a pretrained nerfmm system.
  3. task/any_folder/train.py: This is a training script that takes a folder that contains forward-facing images and trains with our nerfmm system without making any comparison with COLMAP. It is similar to what we offer in our CoLab notebook and we treat this any_folder target as a playgraound, where users can try novel view synthesis by just providing an image folder and do not care how the camera parameter estimation compares with COLMAP.

For each target, we provide relevant utilities to evaluate our system. Specifically,

  • for the nerfmm target, we provide three utility files:
    • eval.py to evaluate image rendering quality on validation splits with PSNR, SSIM and LPIPS, i.e, results in Table 1.
    • spiral.py to render novel views using a spiral camera trajectory, i.e. results in Figure 1.
    • vis_learned_poses.py to visualise our camera parameter estimation with COLMAP estimation in 3D. It also computes ATE between them, i.e. E1 in Table 2.
  • for the refine_nerfmm target, all utilities in nerfmm target above are compatible with refine_nerfmm target, since it just refines a pretrained nerfmm system.
  • for the any_folder target, it has its own spiral.py and vis_learned_poses.py utilities, as it does not compare with COLMAP. It does not have a eval.py file as this target is treated as a playground and does not split images to train/validation sets. It only provides novel view synthesis results via the spiral.py file.

Table of Content

Environment

We provide a requirement.yml file to set up a conda environment:

git clone https://github.com/ActiveVisionLab/nerfmm.git
cd nerfmm
conda env create -f environment.yml

Generally, our code should be able to run with any pytorch >= 1.1 .

(Optional) Install open3d for visualisation. You might need a physical monitor to install this lib.

pip install open3d

Get Data

We use the NeRF-LLFF dataset with two small structural changes:

  1. We remove their image_4 and image_8 folder and downsample images to any desirable resolution during data loading dataloader/with_colmap.py, by calling PyTorch's interpolate function.
  2. We explicitly generate two txt files for train/val image ids. i.e. take every 8th image as the validation set, as in the official NeRF train/val split. The only difference is that we store them as txt files while NeRF split them during data loading. The file produces these two txt files is utils/split_dataset.py.

In addition to the NeRF-LLFF dataset, we provide two demo scenes to demonstrate how to use the any_folder target.

We pack the re-structured LLFF data and our data to a tar ball (~1.8G), to get it, run:

wget https://www.robots.ox.ac.uk/~ryan/nerfmm2021/nerfmm_release_data.tar.gz

Untar the data:

tar -xzvf path/to/the/tar.gz

Training

We show how to:

  1. train a nerfmm from scratch, i.e. initialise camera poses with identity matrices and focal lengths with image resolution:
    python tasks/nerf/train.py \
    --base_dir='path/to/nerfmm_release/data' \
    --scene_name='LLFF/fern'
  2. train a nerfmm from COLMAP initialisation:
    python tasks/nerf/train.py \
    --base_dir='path/to/nerfmm_release/data' \
    --scene_name='LLFF/fern' \
    --start_refine_pose_epoch=1000 \
    --start_refine_focal_epoch=1000
    This command initialises a nerfmm target with COLMAP parameters, trains with them for 1000 epochs, and starts refining those parameters after 1000 epochs.
  3. train a nerfmm from a pretrained nerfmm:
    python tasks/refine_nerfmm/train.py \
    --base_dir='path/to/nerfmm_release/data' \
    --scene_name='LLFF/fern' --start_refine_epoch=1000 \
    --ckpt_dir='path/to/a/dir/contains/nerfmm/ckpts'
    This command initialises a refine_nerfmm target with a set of pretrained nerfmm parameters, trains with them for 1000 epochs, and starts refining those parameters after 1000 epochs.
  4. train an any_folder from scratch given an image folder:
    python tasks/any_folder/train.py \
    --base_dir='path/to/nerfmm_release/data' \
    --scene_name='any_folder_demo/desk'
    This command trains an any_folder target using a provided demo scene desk.

(Optional) set a symlink to the downloaded data:

mkdir data_dir  # do it in this nerfmm repo
cd data_dir
ln -s /path/to/downloaded/data ./nerfmm_release_data
cd ..

this can simplify the above training commands, for example:

python tasks/nerfmm/train.py

Evaluation

Compute image quality metrics

Call eval.py in nerfmm target:

python tasks/nerfmm/eval.py \
--base_dir='path/to/nerfmm_release/data' \
--scene_name='LLFF/fern' \
--ckpt_dir='path/to/a/dir/contains/nerfmm/ckpts'

This file can be used to evaluate a checkpoint trained with refine_nerfmm target. For some scenes, you might need to tweak with --opt_eval_lr option to get the best results. Common values for opt_eval_lr are 0.01 / 0.005 / 0.001 / 0.0005 / 0.0001. The default value is 0.001. Overall, it finds validation poses that can produce highest PSNR on validation set while freezing NeRF and focal lengths. We do this because the learned camera pose space is different from the COLMAP estimated camera pose space.

Render novel views

Call spiral.py in each target. The spiral.py in nerfmm is compatible with refine_nerfmm target:

python spiral.py \
--base_dir='path/to/nerfmm_release/data' \
--scene_name='LLFF/fern' \
--ckpt_dir='path/to/a/dir/contains/nerfmm/ckpts'

Visualise estimated poses in 3D

Call vis_learned_poses.py in each target. The vis_learned_poses.py in nerfmm is compatible with refine_nerfmm target:

python spiral.py \
--base_dir='path/to/nerfmm_release/data' \
--scene_name='LLFF/fern' \
--ckpt_dir='path/to/a/dir/contains/nerfmm/ckpts'

Acknowledgement

Shangzhe Wu is supported by Facebook Research. Weidi Xie is supported by Visual AI (EP/T028572/1).

The authors would like to thank Tim Yuqing Tang for insightful discussions and proofreading.

During our NeRF implementation, we referenced several open sourced NeRF implementations, and we thank their contributions. Specifically, we referenced functions from nerf and nerf-pytorch, and borrowed/modified code from nerfplusplus and nerf_pl. We especially appreciate the detailed code comments and git issue answers in nerf_pl.

Citation

@article{wang2021nerfmm,
  title={Ne{RF}$--$: Neural Radiance Fields Without Known Camera Parameters},
  author={Zirui Wang and Shangzhe Wu and Weidi Xie and Min Chen and Victor Adrian Prisacariu},
  journal={arXiv preprint arXiv:2102.07064},
  year={2021}
}
Owner
Active Vision Laboratory
Active Vision Laboratory
MoCap-Solver: A Neural Solver for Optical Motion Capture Data

MoCap-Solver is a data-driven-based robust marker denoising method, which takes raw mocap markers as input and outputs corresponding clean markers and skeleton motions.

55 Dec 28, 2022
Just-Now - This Is Just Now Login Friendlist Cloner Tools

JUST NOW LOGIN FRIENDLIST CLONER TOOLS Install $ apt update $ apt upgrade $ apt

MAHADI HASAN AFRIDI 21 Mar 09, 2022
The description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts.

FMFCC-A This project is the description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts. The FMFCC-A dataset is shared through BaiduCl

18 Dec 24, 2022
Jiminy Cricket Environment (NeurIPS 2021)

Jiminy Cricket This is the repository for "What Would Jiminy Cricket Do? Towards Agents That Behave Morally" by Dan Hendrycks*, Mantas Mazeika*, Andy

Dan Hendrycks 15 Aug 29, 2022
The DL Streamer Pipeline Zoo is a catalog of optimized media and media analytics pipelines.

The DL Streamer Pipeline Zoo is a catalog of optimized media and media analytics pipelines. It includes tools for downloading pipelines and their dependencies and tools for measuring their performace

8 Dec 04, 2022
The implementation for paper Joint t-SNE for Comparable Projections of Multiple High-Dimensional Datasets.

Joint t-sne This is the implementation for paper Joint t-SNE for Comparable Projections of Multiple High-Dimensional Datasets. abstract: We present Jo

IDEAS Lab 7 Dec 18, 2022
The authors' implementation of Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations

Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations This is the authors' implementation of Unsupervised Adversarial Learning of

Dwango Media Village 140 Dec 07, 2022
C3d-pytorch - Pytorch porting of C3D network, with Sports1M weights

C3D for pytorch This is a pytorch porting of the network presented in the paper Learning Spatiotemporal Features with 3D Convolutional Networks How to

Davide Abati 311 Jan 06, 2023
Combinatorially Hard Games where the levels are procedurally generated

puzzlegen Implementation of two procedurally simulated environments with gym interfaces. IceSlider: the agent needs to reach and stop on the pink squa

Autonomous Learning Group 3 Jun 26, 2022
Streaming Anomaly Detection Framework in Python (Outlier Detection for Streaming Data)

Python Streaming Anomaly Detection (PySAD) PySAD is an open-source python framework for anomaly detection on streaming multivariate data. Documentatio

Selim Firat Yilmaz 181 Dec 18, 2022
Fast, modular reference implementation and easy training of Semantic Segmentation algorithms in PyTorch.

TorchSeg This project aims at providing a fast, modular reference implementation for semantic segmentation models using PyTorch. Highlights Modular De

ycszen 1.4k Jan 02, 2023
Code for Domain Adaptive Video Segmentation via Temporal Consistency Regularization in ICCV 2021

Domain Adaptive Video Segmentation via Temporal Consistency Regularization Updates 08/2021: check out our domain adaptation for sematic segmentation p

36 Dec 12, 2022
The audio-video synchronization of MKV Container Format is exploited to achieve data hiding

The audio-video synchronization of MKV Container Format is exploited to achieve data hiding, where the hidden data can be utilized for various management purposes, including hyper-linking, annotation

Maxim Zaika 1 Nov 17, 2021
Transformer Tracking (CVPR2021)

TransT - Transformer Tracking [CVPR2021] Official implementation of the TransT (CVPR2021) , including training code and trained models. We are revisin

chenxin 465 Jan 06, 2023
[IROS'21] SurRoL: An Open-source Reinforcement Learning Centered and dVRK Compatible Platform for Surgical Robot Learning

SurRoL IROS 2021 SurRoL: An Open-source Reinforcement Learning Centered and dVRK Compatible Platform for Surgical Robot Learning Features dVRK compati

<a href=[email protected]"> 55 Jan 03, 2023
Keras implementation of Real-Time Semantic Segmentation on High-Resolution Images

Keras-ICNet [paper] Keras implementation of Real-Time Semantic Segmentation on High-Resolution Images. Training in progress! Requisites Python 3.6.3 K

Aitor Ruano 87 Dec 16, 2022
GNEE - GAT Neural Event Embeddings

GNEE - GAT Neural Event Embeddings This repository contains source code for the GNEE (GAT Neural Event Embeddings) method introduced in the paper: "Se

João Pedro Rodrigues Mattos 0 Sep 15, 2021
Codeflare - Scale complex AI/ML pipelines anywhere

Scale complex AI/ML pipelines anywhere CodeFlare is a framework to simplify the integration, scaling and acceleration of complex multi-step analytics

CodeFlare 169 Nov 29, 2022
Official repository of the paper "A Variational Approximation for Analyzing the Dynamics of Panel Data". Mixed Effect Neural ODE. UAI 2021.

Official repository of the paper (UAI 2021) "A Variational Approximation for Analyzing the Dynamics of Panel Data", Mixed Effect Neural ODE. Panel dat

Jurijs Nazarovs 7 Nov 26, 2022
[AAAI 2022] Sparse Structure Learning via Graph Neural Networks for Inductive Document Classification

Sparse Structure Learning via Graph Neural Networks for inductive document classification Make graph dataset create co-occurrence graph for datasets.

16 Dec 22, 2022