Cohort Intelligence used to solve various mathematical functions

Overview

Cohort-Intelligence-for-Mathematical-Functions

About Cohort Intelligence :

Cohort Intelligence ( CI ) is an optimization technique. It attempts to model the behavior often observed in a self-organizing system in which candidates in a cohort interact and compete with one another in order to achieve shared goals. Each candidate tries to improve its own behavior by observing the behavior of every other candidate in that cohort. Each candidate in the cohort follows a certain behavior which may result in the improvement of its own behavior. When a candidate attempts to follow a given behavior characterized by certain qualities, it often adopts such qualities in a manner that may improve its own goal. In this way, candidates in the cohort learn from one another which, in time, helps improve the behavior of the entire group. The cohort’s behavior as a whole is said to have reached saturation (convergence) if, over a considerable number of learning attempts, the individual behavior of all candidates does not improve considerably making it difficult to distinguish between them. In other words, the difference between the individual behaviors of the candidates becomes insignificant.

Read more about CI here.

This repository contains the following functions solved using Cohort Intelligence :

  1. Colville Function
  2. Dixon and Price Function
  3. Sphere Function

1. Branin Function :

The following site provides data about Branin Function.

3D plot of Sphere Function :

The output of Branin Function using CI approach is provided below :

  • Output with 50 Learning Attempts :

  • Output with 500 Learning Attempts :

2. Colville Function :

The following site provides data about Colville Function.

3D plot of Colville Function :

The Global Minimum of Colville Function is obtained at f(x*) = 0, at x* = (1,1,1,1).

The output of Colville Function using CI approach is provided below :

3. Dixon and Price Function :

The following site provides data about Dixon and Price Function.

3D plot of Dixon and Price Function :

The output of Colville Function using CI approach is provided below :

4. Sphere Function :

The following site provides data about Dixon and Price Function.

3D plot of Sphere Function :

The output of Colville Function using CI approach is provided below :

Owner
Aayush Khandekar
Aayush Khandekar
Python-based implementations of algorithms for learning on imbalanced data.

ND DIAL: Imbalanced Algorithms Minimalist Python-based implementations of algorithms for imbalanced learning. Includes deep and representational learn

DIAL | Notre Dame 220 Dec 13, 2022
Hierarchical Time Series Forecasting using Prophet

htsprophet Hierarchical Time Series Forecasting using Prophet Credit to Rob J. Hyndman and research partners as much of the code was developed with th

Collin Rooney 131 Dec 02, 2022
Graphsignal is a machine learning model monitoring platform.

Graphsignal is a machine learning model monitoring platform. It helps ML engineers, MLOps teams and data scientists to quickly address issues with data and models as well as proactively analyze model

Graphsignal 143 Dec 05, 2022
Laporan Proyek Machine Learning - Azhar Rizki Zulma

Laporan Proyek Machine Learning - Azhar Rizki Zulma Project Overview Domain proyek yang dipilih dalam proyek machine learning ini adalah mengenai hibu

Azhar Rizki Zulma 6 Mar 12, 2022
Scikit learn library models to account for data and concept drift.

liquid_scikit_learn Scikit learn library models to account for data and concept drift. This python library focuses on solving data drift and concept d

7 Nov 18, 2021
This is the code repository for LRM Stochastic watershed model.

LRM-Squannacook Input data for generating stochastic streamflows are observed and simulated timeseries of streamflow. their format needs to be CSV wit

1 Feb 14, 2022
A toolkit for geo ML data processing and model evaluation (fork of solaris)

An open source ML toolkit for overhead imagery. This is a beta version of lunular which may continue to develop. Please report any bugs through issues

Ryan Avery 4 Nov 04, 2021
stability-selection - A scikit-learn compatible implementation of stability selection

stability-selection - A scikit-learn compatible implementation of stability selection stability-selection is a Python implementation of the stability

185 Dec 03, 2022
A Python package to preprocess time series

Disclaimer: This package is WIP. Do not take any APIs for granted. tspreprocess Time series can contain noise, may be sampled under a non fitting rate

Maximilian Christ 57 Dec 17, 2022
ArviZ is a Python package for exploratory analysis of Bayesian models

ArviZ (pronounced "AR-vees") is a Python package for exploratory analysis of Bayesian models. Includes functions for posterior analysis, data storage, model checking, comparison and diagnostics

ArviZ 1.3k Jan 05, 2023
2D fluid simulation implementation of Jos Stam paper on real-time fuild dynamics, including some suggested extensions.

Fluid Simulation Usage Download this repo and store it in your computer. Open a terminal and go to the root directory of this folder. Make sure you ha

Mariana Ávalos Arce 5 Dec 02, 2022
Microsoft contributing libraries, tools, recipes, sample codes and workshop contents for machine learning & deep learning.

Microsoft contributing libraries, tools, recipes, sample codes and workshop contents for machine learning & deep learning.

Microsoft 366 Jan 03, 2023
An MLOps framework to package, deploy, monitor and manage thousands of production machine learning models

Seldon Core: Blazing Fast, Industry-Ready ML An open source platform to deploy your machine learning models on Kubernetes at massive scale. Overview S

Seldon 3.5k Jan 01, 2023
Machine Learning for RC Cars

Suiron Machine Learning for RC Cars Prediction visualization (green = actual, blue = prediction) Click the video below to see it in action! Dependenci

Kendrick Tan 706 Jan 02, 2023
This is a curated list of medical data for machine learning

Medical Data for Machine Learning This is a curated list of medical data for machine learning. This list is provided for informational purposes only,

Andrew L. Beam 5.4k Dec 26, 2022
AI and Machine Learning with Kubeflow, Amazon EKS, and SageMaker

Data Science on AWS - O'Reilly Book Get the book on Amazon.com Book Outline Quick Start Workshop (4-hours) In this quick start hands-on workshop, you

Data Science on AWS 2.8k Jan 03, 2023
Responsible Machine Learning with Python

Examples of techniques for training interpretable ML models, explaining ML models, and debugging ML models for accuracy, discrimination, and security.

ph_ 624 Jan 06, 2023
Probabilistic time series modeling in Python

GluonTS - Probabilistic Time Series Modeling in Python GluonTS is a Python toolkit for probabilistic time series modeling, built around Apache MXNet (

Amazon Web Services - Labs 3.3k Jan 03, 2023
Stacked Generalization (Ensemble Learning)

Stacking (stacked generalization) Overview ikki407/stacking - Simple and useful stacking library, written in Python. User can use models of scikit-lea

Ikki Tanaka 192 Dec 23, 2022