Official Code for VideoLT: Large-scale Long-tailed Video Recognition (ICCV 2021)

Overview

Pytorch Code for VideoLT

[Website][Paper]

Updates

  • [10/29/2021] Features uploaded to Google Drive, for access please send us an e-mail: zhangxing18 at fudan.edu.cn
  • [09/28/2021] Features uploaded to Aliyun Drive(deprecated), for access please send us an e-mail: zhangxing18 at fudan.edu.cn
  • [08/23/2021] Checkpoint links uploaded, sorry we are handling campus network bandwidth limitation, dataset will be released in this weeek.
  • [08/15/2021] Code released. Dataset download links and checkpoints links will be updated in a week.
  • [07/29/2021] Dataset released, visit https://videolt.github.io/ for downloading.
  • [07/23/2021] VideoLT is accepted by ICCV2021.

concept

Overview

VideoLT is a large-scale long-tailed video recognition dataset, as a step toward real-world video recognition. We provide VideoLT dataset and long-tailed baselines in this repo including:

Data Preparation

Please visit https://videolt.github.io/ to obtain download links. We provide raw videos and extracted features.

For using extracted features, please modify dataset/dutils.py and set the correct path to features.

Model Zoo

The baseline scripts and checkpoints are provided in MODELZOO.md.

FrameStack

FrameStack is simple yet effective approach for long-tailed video recognition which re-samples training data at the frame level and adopts a dynamic sampling strategy based on knowledge learned by the network. The rationale behind FrameStack is to dynamically sample more frames from videos in tail classes and use fewer frames for those from head classes.

framestack

Usage

Requirement

pip install -r requirements.txt

Prepare Data Path

  1. Modify FEATURE_NAME, PATH_TO_FEATURE and FEATURE_DIM in dataset/dutils.py.

  2. Set ROOT in dataset/dutils.py to labels folder. The directory structure is:

    labels
    |-- count-labels-train.lst
    |-- test.lst
    |-- test_videofolder.txt
    |-- train.lst
    |-- train_videofolder.txt
    |-- val_videofolder.txt
    `-- validate.lst

Train

We provide scripts for training. Please refer to MODELZOO.md.

Example training scripts:

FEATURE_NAME='ResNet101'

export CUDA_VISIBLE_DEVICES='2'
python base_main.py  \
     --augment "mixup" \
     --feature_name $FEATURE_NAME \
     --lr 0.0001 \
     --gd 20 --lr_steps 30 60 --epochs 100 \
     --batch-size 128 -j 16 \
     --eval-freq 5 \
     --print-freq 20 \
     --root_log=$FEATURE_NAME-log \
     --root_model=$FEATURE_NAME'-checkpoints' \
     --store_name=$FEATURE_NAME'_bs128_lr0.0001_lateavg_mixup' \
     --num_class=1004 \
     --model_name=NonlinearClassifier \
     --train_num_frames=60 \
     --val_num_frames=150 \
     --loss_func=BCELoss \

Note: Set args.resample, args.augment and args.loss_func can apply multiple long-tailed stratigies.

Options:

    args.resample: ['None', 'CBS','SRS']
    args.augment : ['None', 'mixup', 'FrameStack']
    args.loss_func: ['BCELoss', 'LDAM', 'EQL', 'CBLoss', 'FocalLoss']

Test

We provide scripts for testing in scripts. Modify CKPT to saved checkpoints.

Example testing scripts:

FEATURE_NAME='ResNet101'
CKPT='VideoLT_checkpoints/ResNet-101/ResNet101_bs128_lr0.0001_lateavg_mixup/ckpt.best.pth.tar'

export CUDA_VISIBLE_DEVICES='1'
python base_test.py \
     --resume $CKPT \
     --feature_name $FEATURE_NAME \
     --batch-size 128 -j 16 \
     --print-freq 20 \
     --num_class=1004 \
     --model_name=NonlinearClassifier \
     --train_num_frames=60 \
     --val_num_frames=150 \
     --loss_func=BCELoss \

Citing

If you find VideoLT helpful for your research, please consider citing:

@misc{zhang2021videolt,
title={VideoLT: Large-scale Long-tailed Video Recognition}, 
author={Xing Zhang and Zuxuan Wu and Zejia Weng and Huazhu Fu and Jingjing Chen and Yu-Gang Jiang and Larry Davis},
year={2021},
eprint={2105.02668},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
Owner
Skye
Soul Programmer & Science Enthusiast
Skye
Official Pytorch implementation of Meta Internal Learning

Official Pytorch implementation of Meta Internal Learning

10 Aug 24, 2022
Official code release for 3DV 2021 paper Human Performance Capture from Monocular Video in the Wild.

Official code release for 3DV 2021 paper Human Performance Capture from Monocular Video in the Wild.

Chen Guo 58 Dec 24, 2022
Exploring whether attention is necessary for vision transformers

Do You Even Need Attention? A Stack of Feed-Forward Layers Does Surprisingly Well on ImageNet Paper/Report TL;DR We replace the attention layer in a v

Luke Melas-Kyriazi 461 Jan 07, 2023
Sequence-to-Sequence learning using PyTorch

Seq2Seq in PyTorch This is a complete suite for training sequence-to-sequence models in PyTorch. It consists of several models and code to both train

Elad Hoffer 514 Nov 17, 2022
Keyword-BERT: Keyword-Attentive Deep Semantic Matching

project discription An implementation of the Keyword-BERT model mentioned in my paper Keyword-Attentive Deep Semantic Matching (Plz cite this github r

1 Nov 14, 2021
3D Human Pose Machines with Self-supervised Learning

3D Human Pose Machines with Self-supervised Learning Keze Wang, Liang Lin, Chenhan Jiang, Chen Qian, and Pengxu Wei, “3D Human Pose Machines with Self

Chenhan Jiang 398 Dec 20, 2022
This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?".

Patches Are All You Need? 🤷 This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?". Code ov

ICLR 2022 Author 934 Dec 30, 2022
Physics-informed Neural Operator for Learning Partial Differential Equation

PINO Physics-informed Neural Operator for Learning Partial Differential Equation Abstract: Machine learning methods have recently shown promise in sol

107 Jan 02, 2023
One-line your code easily but still with the fun of doing so!

One-liner-iser One-line your code easily but still with the fun of doing so! Have YOU ever wanted to write one-line Python code, but don't have the sa

5 May 04, 2022
[CVPR 2021] Monocular depth estimation using wavelets for efficiency

Single Image Depth Prediction with Wavelet Decomposition Michaël Ramamonjisoa, Michael Firman, Jamie Watson, Vincent Lepetit and Daniyar Turmukhambeto

Niantic Labs 205 Jan 02, 2023
Python PID Tuner - Makes a model of the System from a Process Reaction Curve and calculates PID Gains

PythonPID_Tuner_SOPDT Step 1: Takes a Process Reaction Curve in csv format - assumes data at 100ms interval (column names CV and PV) Step 2: Makes a r

1 Jan 18, 2022
SAGE: Sensitivity-guided Adaptive Learning Rate for Transformers

SAGE: Sensitivity-guided Adaptive Learning Rate for Transformers This repo contains our codes for the paper "No Parameters Left Behind: Sensitivity Gu

Chen Liang 23 Nov 07, 2022
novel deep learning research works with PaddlePaddle

Research 发布基于飞桨的前沿研究工作,包括CV、NLP、KG、STDM等领域的顶会论文和比赛冠军模型。 目录 计算机视觉(Computer Vision) 自然语言处理(Natrual Language Processing) 知识图谱(Knowledge Graph) 时空数据挖掘(Spa

1.5k Dec 29, 2022
The Official Repository for "Generalized OOD Detection: A Survey"

Generalized Out-of-Distribution Detection: A Survey 1. Overview This repository is with our survey paper: Title: Generalized Out-of-Distribution Detec

Jingkang Yang 338 Jan 03, 2023
Paddle Graph Learning (PGL) is an efficient and flexible graph learning framework based on PaddlePaddle

DOC | Quick Start | 中文 Breaking News !! 🔥 🔥 🔥 OGB-LSC KDD CUP 2021 winners announced!! (2021.06.17) Super excited to announce our PGL team won TWO

1.5k Jan 06, 2023
Pytorch implementation of Decoupled Spatial-Temporal Transformer for Video Inpainting

Decoupled Spatial-Temporal Transformer for Video Inpainting By Rui Liu, Hanming Deng, Yangyi Huang, Xiaoyu Shi, Lewei Lu, Wenxiu Sun, Xiaogang Wang, J

51 Dec 13, 2022
Simple embedding based text classifier inspired by fastText, implemented in tensorflow

FastText in Tensorflow This project is based on the ideas in Facebook's FastText but implemented in Tensorflow. However, it is not an exact replica of

Alan Patterson 306 Dec 02, 2022
ViDT: An Efficient and Effective Fully Transformer-based Object Detector

ViDT: An Efficient and Effective Fully Transformer-based Object Detector by Hwanjun Song1, Deqing Sun2, Sanghyuk Chun1, Varun Jampani2, Dongyoon Han1,

NAVER AI 262 Dec 27, 2022
A supplementary code for Editable Neural Networks, an ICLR 2020 submission.

Editable neural networks A supplementary code for Editable Neural Networks, an ICLR 2020 submission by Anton Sinitsin, Vsevolod Plokhotnyuk, Dmitry Py

Anton Sinitsin 32 Nov 29, 2022
This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset.

DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Up

19 Jan 16, 2022